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Detecting Surgical Tools by Modelling
Local Appearance and Global Shape

David Bouget*, Rodrigo Benenson, Mohamed Omran, Laurent Riffaud, Bernt Schiele, and Pierre Jannin

Abstract—Detecting tools in surgical videos is an important
ingredient for context-aware computer-assisted surgical systems.
To this end, we present a new surgical tool detection dataset
and a method for joint tool detection and pose estimation in 2d
images. Our two-stage pipeline is data-driven and relaxes strong
assumptions made by previous works regarding the geometry,
number, and position of tools in the image. The first stage classifies
each pixel based on local appearance only, while the second stage
evaluates a tool-specific shape template to enforce global shape.
Both local appearance and global shape are learned from training
data. Our method is validated on a new surgical tool dataset of
2 476 images from neurosurgical microscopes, which is made
freely available. It improves over existing datasets in size, diversity
and detail of annotation. We show that our method significantly
improves over competitive baselines from the computer vision
field. We achieve 15% detection miss-rate at false positives
per image (for the suction tube) over our surgical tool dataset.
Results indicate that performing semantic labelling as an interme-
diate task is key for high quality detection.

Index Terms—Microscope images, object detection, surgical
tools, template matching.

I. INTRODUCTION

P REVENTABLE medical errors in the operating room
occur frequently enough to cost tens of thousands of

human lives per year in the USA [1]. To reduce such human
errors, the medical technology community seeks to augment
the capabilities of the surgeon with context-aware computer-as-
sisted surgical systems [2], [3]. The aim of such systems is to
optimally inform and guide the surgeon in real-time during the
operation according to ongoing surgical tasks. One of the best
solutions to recognize a surgical task is to identify surgical tools
used and their behaviours (e.g., trajectories). Accurate and fast
(i.e., speed of the recording device) tool detection and pose
estimation on existing imaging setups are key components to
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Fig. 1. Example detection results on the new surgical dataset.

enable the deployment of context-aware systems with minimal
changes to existing operating rooms [4].

A. Related Work

In a medical context, early works proposed to modify the
physical integrity of surgical tools by the addition of external
markers with the motivation to ease image-based detection pro-
cesses. Black multiple-part tags with recognizable patterns [5]
and also colour tags varying in size and position [6] have been
investigated. More technologically advanced external markers
such as light-emitting diodes [7] or RFID tags [8] have also been
considered. However, approaches requiring to apply physical
modifications to surgical tools encounter many regulation is-
sues as they raise safety concerns, and are not straightforwardly
transferable into the operating theatre.
From the literature, two principal categories of image-based

techniques arise: techniques performing full-image analysis
and techniques re-using the knowledge of detected tools in pre-
vious frames through tracking algorithms, the latter being the
favoured one. Approaches have included filtering-tracking via
particle filters [9] or Kalman filters [10], [11]; contour-tracking
relying on the CONDENSATION algorithm [12], [13]; re-
gion-based tracking using mutual information as similarity
measure [14]; and feature matching from FAST corners [15].
Kumar et al. [16] proposed an interesting line of work dwelling
in an optimal fusion between outputs from various trackers,
taking advantage of feature-based tracking robustness to small
motion and region-based tracking robustness to significant mo-
tion. Nevertheless, all class-specific tracking methods require a
class-specific detector for (re-)initialisation of the tracking pro-
cedure. Although high average speed might be obtained using
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tracking, the frame by frame speed and quality are bounded by
the detection method employed. This is why we focus on the
detection task, and leave aside tracking.
Detection methods, either implemented in a stand-alone

fashion or for the purpose of tracking initialization, can belong
to one of the three following groups: ad-hoc image-processing
techniques, data-driven approaches that directly leverage fea-
tures extracted from the input image (named single-stage), and
data-driven approaches requiring an intermediary step (named
two-stage).
Among the ad-hoc techniques, Voros et al. [17] performed a

succession of mathematical morphology operations using the
3d tool insertion position in the abdominal cavity and the shape
information to strongly constrain the detection search space.
In Haase et al. [18], a three-layer approach encompassing
clustering and Hough fitting operations has been proposed,
assuming rigid tools with cylindrical shaft entering the scene
from image boundaries.
Single-stage approaches include the work of Kumar et al.

[16], in which they propose to model instruments by parts using
HOG features, and perform the detection process through La-
tent Support Vector Machine (LSVM) classification. For retinal
microsurgery purposes, Sznitman et al. [19] proposed to use
a deformable detector where edge features are computed and
fed to an AdaBoost algorithm as model learning strategy [20].
Their detector is robust to in-plane rotations but the evalua-
tion was only based on a single point detection without rota-
tion estimate, and a single tool was present in the videos. In an-
other work, Sznitman et al. [21] proposed an algorithm to detect
needle-shaped objects, by propagating hypotheses starting from
the image border. Such an approach seems unable to handle
tools occluded around the image boundaries, overlapping tools,
or tools without a rectilinear tubular shape.
Lastly, in two-stage approaches, the detector's first stage in-

volves classifying each pixel of the input image as either “in-
strument” or “background”. On top of response scores from this
classification, the second stage results in an estimate of the tool's
pose, i.e., instrument location, extent, and orientation. In Pezze-
menti et al. [22], a Gaussian mixture model using colour and
texture features is used to perform the first stage, while a known
by-part 3d model of the tool is iteratively projected (rotation and
translation) on the resulting label mask to find the optimal object
pose using maximum likelihood estimation. Tackling 3d-pose
estimation challenges, Allan et al. [23] performed the pixel-wise
classification using Random Forests based on a combination of
colour, HOG, and SIFT features. Tool positions are retrieved
from the semantic labels map using a flooding algorithm to iden-
tify the largest connected components. Underlying shapes are
analysed using the moment of inertia tensor to retrieve principal
orientation axes. The pose is refined within each region using an
energy function and prior information of the tool geometry for
the 2d to 3d lifting to obtain final 3d pose estimates. Their ap-
proach assumes a known number of tools, with known 3d geom-
etry, and expects the tool to be visible at the image borders. In
Sznitman et al. [24], an instrument-part detector has been pro-
posed, with an early stopping scheme for speed efficiency. The
multi-class classifier is combining the gradient boosting frame-
work with edges features to assign an instrument-part or back-

ground label to each pixel of an image. Then, the different parts
of the instrument are estimated by weighted averaging on the
response scores. The overall instrument orientation is retrieved
using RANSAC, by fitting the estimated shape of the instrument
(i.e., a line) over the resulting labelled image.
Usually only two classes are modelled for the pixel-wise clas-

sification, one to represent tool pixels and one for background
pixels [22], [25]. However, the possibility exists to represent
one instrument with more than one label, which is particularly
interesting for part-based detection purposes [11].
Whichever the tool detection strategy, many existing ap-

proaches rely on a set of assumptions or prior knowledge to
constrain the search space, hence facilitating the task. Such
knowledge having different forms and aspects, four groups can
be identified for its representation: assumptions on instruments'
location in the image, assumptions on instruments' shape,
external assistance from a robotic system, or human assistance.
Surgical tools were often assumed to be simple tubular shapes
[24], [26], solid cylinders with a tip alongside the centre-line
[10], [18], [23], or rough estimates such as two parallel side
segments [17], [25]. Instruments' location assumptions relate
to appearance and disappearance from the field-of-view, as
tools must intersect with image boundaries to be visible [13],
[21], [23]. When using robotic surgical systems, information
provided by internal encoders represents a good estimate of
tool positions [10], or can be used to render on-the-fly models
with a limited set of joint configurations [27]. Finally, the user
can be asked to manually identify the image region to track
for online learning methods [15]. Using prior knowledge or an
extended set of assumptions, detection methods may or may not
transfer well from their design space to other surgical contexts
or instruments, and as such can be detrimental for the creation
of generic approaches.
The aim of this work is to jointly detect surgical tools and

retrieve their pose in 2-dimensional monocular in-vivo images,
gathered from operating microscopes. We consider the pose to
be described by a limited number of parameters: overall po-
sition, orientation, and tip location. Our proposed approach is
built upon the strategy of two-stage framework detectors, and at-
tempts to relax assumptions on the number of tools, their shape,
and their position in the image. The pixel-wise classification (so-
called semantic labelling) is performed using a TextonBoost-
like approach [28]. For each surgical tool category, we pro-
pose to learn a shape model from training data using a linear
SVM integrating a spatial regularisation term. The pose estima-
tion step is evaluating such models in a brute-force manner over
the pixel-wise classification results in a sliding-window fashion.
Even though being computationally intense, the method is well-
suited for GPU parallel computing and is able to perform sur-
gical tool detection in real-time.

B. Existing Datasets

For the surgical tool detection task, no reference dataset ex-
ists, hence none of the previous works has been compared over
the same data (nor using the same procedure). In addition, it is
not yet common practice to release annotated datasets, and thus
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it is difficult to perform comparative studies with published re-
sults. A few public datasets containing in-vivo surgical images,
eligible for our study, are available:
• A robotic tool dataset focusing on surgery performed using
the DaVinci robot [16]. It contains a total of 1 950 frames
from 12 different stereoscopic videos (average length of 4
seconds). Only two (fixed) tools are visible at any time and
annotations are bounding boxes around the tool. We argue
that for a proper evaluation more precise annotations are
needed.

• A set of retinal and laparoscopic videos with bounding box
and centre point annotations [19]. The retinal surgery set
contains 1 500 frames (from 4 videos). Retinal images have
very homogeneous backgrounds, and contain one tool at
most, rendering the detection problem significantly simpler
than our setup. The laparoscopic set contains 1 000 images
from a single video, showing two instruments per image.
With a single video as source, the dataset lacks diversity
and proper training and testing splits.

• A video dataset depicting minimally-invasive surgery
(MIS) [23]. It contains ~100 images (from 6 videos) with
pixel-wise annotations for the tools. Our proposed dataset
is 20 larger and contains additional annotations.

• A set of 40 in-vivo video sequences recorded from
robotic-assisted MIS procedures, involving scale and
rotation changes [29]. No tool annotations are provided
with the videos.

Main limitations of these datasets include a lack in data, diver-
sity or precision in annotations, making them unsuitable as ref-
erence for comparison amongst methods.
In this paper, we first present a new publicly available

surgical images dataset (described in Section II) that is larger
than previous datasets and has tight annotations around the
tools (bounding polygons). Section III describes our two-stage
approach which makes no a-priori assumptions on the number
of visible surgical tools, their shape, or their relative positions
in the image. In Section IV and Section V, we present the
evaluation methodology, a set of baseline methods on this
task and show the importance of using methods including
feature learning. Finally, sections Sections VI and VII provide
a discussion, conclusions and future work directions.

II. THE DATASET

A. Dataset Creation

This new dataset is derived from a set of 14 monocular videos
captured via “Zeiss OPMI Pentero classic” microscopes (720
576 pixels at 25 fps) during in-vivo surgeries performed at

CHU Pontchaillou, Rennes. The videos depict different opera-
tions, more specifically brain and spine tumour removal proce-
dures. Illumination and camera parameters differ slightly among
the videos.
In order to remove side-effects on still images when extracted

from interlaced videos, each sequence has been re-encoded for
a final video resolution of 612 460 pixels. After sampling at 1
Hz, a random selection is performed to assemble the proposed

dataset which consists of 2 476 frames.
Seven different tool categories are featured for a total of 3 819

Fig. 2. Example dataset frames (left column) and annotations (right column).
In the upper right image, red: suction tube, green: retractor, blue/pink: bipolar
forceps, yellow: triangles encoding position and orientation of the tool.

TABLE I
ANNOTATED TOOLS DISTRIBUTION

different tool appearances (see Table I), detailed statistics are
provided in Section II-C. We also suggest a balanced train and
test split with 1 221 and 1 255 images respectively.
The selected images cover a wide range of situations and

challenging conditions typically observed during tumour re-
moval procedures: tools overlapping each other, tools occluded
by anatomical structures or a surgeon's fingers, tools covered
by blood, tools severely blurred from motion, and specular
reflections.
The dataset is fully anonymised and available at https://

medicis.univ-rennes1.fr/software.

B. Annotation Protocol
Every tool in each image is annotated with a bounding

polygon and a class label. For multiple-part instruments (e.g.,
bipolar forceps or pliers), each part has a distinctive class label.
The suction tube and the upper part of the bipolar forceps are
additionally annotated with an isosceles triangle encoding the
tool orientation, its width, and its tip position (see Fig. 2).
Annotations were done by a domain expert using the LabelMe
software [30].

C. Dataset Statistics
Leaving aside retractors for this calculation as they remain

mostly static throughout a surgical procedure, about 27% of the
frames contain no surgical tools, while 50% have two and only
12% exhibit three simultaneously. For a deeper description of
the dataset, we report below in-plane orientation, scale, and tip
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Fig. 3. Suction tube and bipolar forceps statistics computed over the data-set. (a) In-plane orientation distributions. (b) Scale size distri-
butions (shaft width as reference). (c) Heat map representing tool-tip location.

location distributions for the tools. Since deriving these statis-
tics requires detailed annotations, we exclusively consider the
suction tube and the upper part of the bipolar forceps.
1) Orientation Statistics: During surgeries, surgical tools un-

dergo in-plane rotations in a range mainly constrained by the
surgeon's dexterity. In Fig. 3(a), we report for each of the two
aforementioned tool categories their orientation distributions.
For reference, we consider orientation 0 to represent a surgical
tool horizontally alignedwith its tip facing the left image border.
Surgeons often using a suction tube and a bipolar forceps con-
currently, in addition to both orientation ranges not overlapping,
is implying a similar hand dexterity for all the surgeons featured
in the dataset. Given orientation ranges for the bipolar forceps
between [0 , 30 ] and [320 , 360 ], we can assume all surgeons
to be right-handed as this tool is consistently used by the domi-
nant hand. Similarly, suction tubes in the range [150 , 270 ] in-
dicate left hand manipulation. Relative to a vertical image-cen-
tred axis, a symmetry can be noticed between instrument po-
sitioning, suggesting an optimal placement of surgeons' hands
when facing the operating field.
2) Scale Statistics: Surgical videos being recorded with dif-

ferent microscope parameters, especially the zoom value, sur-
gical tools appear at different scale sizes. In Fig. 3(b), suction
tube and bipolar forceps scale distributions are reported in an
histogram fashion using the tool shaft width as reference value.
The vast majority of suction tubes, around 75%, appear with a
shaft width in-between 20 and 40 pixels. The bipolar forceps
is a comparatively bigger tool, mostly with a shaft width in-be-
tween 40 and 60 pixels (around 60%).
3) Position Statistics: To report position statistics, we com-

pute tool-tip locations over the data-set and plot the resulting
heat map in Fig. 3(c), mixing suction tube and bipolar forceps
statistics. As can be seen, tool-tips are located within an image-
centred circular region that covers a large part of the frame, con-
sistent with surgical microscopes focusing on anatomical struc-
tures where the surgeon is operating. Few tool-tips are notice-
ably close to image borders, representing surgical tools entering
or leaving the field-of-view.

III. DETECTING TOOLS USING SEMANTIC LABELLING
Although surgical tools usually do not have a distinctive

colour (due to reflections, and grey tissue) or texture (some

organs and bones are also untextured), they do exhibit a dis-
tinctive local structure. We thus propose a two-stage detection
approach. The first stage performs local appearance decisions
by classifying each pixel into “tool” or “background” (so called
“semantic labelling” task: steps 1 and 2 of Fig. 4). The second
stage enforces the global shape by evaluating a tool-specific
shape template on top of semantic labelling results (step 3).

A. Semantic Labelling
In order to classify each pixel as being part of a tool or not,

we propose to use the integral channel ap-
proach [31], [32]. This classifier is a boosted decision forest
over selected feature channels. It was originally proposed for
the detection task, however it is suitable for semantic labelling
too [28]. The integral channels approach is interesting because
of its flexibility in leveraging different feature channels and its
strong performance (shown for pedestrian detection [32]).
We consider channels that capture gradient, colour, texture,

and position information. features are 7 channels, one for
gradient magnitude, and six for oriented gradient magnitude.

are 3 colour channels. are 11 channels that correspond
to common named colours [33]. are 8 filter bank channels
(similar to the ones in [28], [34]) which aim to capture texture
information. Finally, are the normalised vertical and hori-
zontal coordinates.
Our 41 41 pixel model uses 500 level-2 decision trees, each

consisting of three decision stumps, and is trained using Ad-
aBoost.We select each split function per decision stump bymin-
imising the 0–1 loss, which amounts to an exhaustive search
over the set of features and corresponding split thresholds. A
feature in this case is a sum over a square region in one par-
ticular feature channel. Our feature pool consists of all possible
square regions inside the model window (see [32] for further de-
tails). Our preliminary experiments indicate that a larger model
window size or an increased number of weak classifiers has little
to no effect on the labelling quality, as reported in Section V-A.
Using shallow trees is a form of regularisation.
Since all considered tools have a similar local appearance,

we train a single classifier for a “generic tool” class, and a
second one for the “background” class. Using two classifiers
avoids relying on a single sensitive threshold, thus providing
more accurate results. Confidence scores of both classifiers (see
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Fig. 4. Overview of the proposed pipeline. Step 1 computes a set of integral feature channels from the input image. Step 2 performs the pixel-wise classification
(or semantic labelling) for two classes: tool and background. Step 3 represents the pose estimation process using SVM shape models. Either multiple response
maps (i.e., semantic scores) or a single map of semantic labels are eligible as input for the pose estimation.

response maps in Fig. 4) are used as input to the shape-based
detection process. The number of response maps is equivalent
to the number of classes (i.e., two in this case), but can be
extended to any number of classes. We will refer to these
multi-class outputs as semantic scores. Alternatively, a single
response map can be obtained by computing a pixel-wise

over each response map. The maximum score across
all classes (maps) determines the label of a pixel (see Semantic
labels in Fig. 4 or Fig. 5). Shape-based detection methods pre-
sented in Section IV-D use either semantic scores or semantic
labels as input.

B. Shape-Based Detection

In our two-stage approach, we propose to capture the global
shape of a specific tool using a single rigid template. This tem-
plate is a linear model that combines the output of the semantic
labelling component into a detection score, without using any
additional features (see Fig. 10).
1) SVM Training: We learn such a template via a linear

SVM, with positive training samples normalized for translation,
rotation, and scale; negatives are randomly sampled. We also
consider regularising the SVM training by adding a 2d spatial
smoothness prior. Details of the SVM training are discussed in
Section III-C.
2) SVM Testing: For each tool category, the SVM model is

learned over a set of normalized pose images. To detect objects
at different scales and orientations during test time, the SVM
template is transformed for each desired scale and orientation
(similar to [35]). This speeds-up test time computation, since it
avoids the need to recompute the semantic labelling at different
scales and orientations. The set of templates are evaluated in a
sliding-window fashion.
For further speed-up, each shape template is approximated

piecewise via a set of squares (see Fig. 6). To perform this ap-
proximation, the SVM model window is sub-divided into 15
15 pixel squares, after addition of extra padding to avoid un-

even square size. A new weight is set for each piece, computed
by averaging SVM values within the square. For the number of

Fig. 5. Semantic labelling results using the integral chan-
nels approach. Detected tool pixels are marked in green.

pieces created to be stable across the various scales processed,
the model scale coefficient is applied to the square size. This
enables using integral images when evaluating the correlation
of each scale/orientation specific template over the semantic la-
belling results. Using integral channels makes the computation
cost of the sliding window independent of the template scale.
Searching for small tools costs as much as looking for large
ones.
Each candidate detection consists of a score, a bounding

polygon on the hypothesized object, a tool-tip position, and
an orientation. To eliminate spurious detection hypotheses,
we apply a form of greedy non-maximum suppression (NMS)
which suppresses multiple nearby detections. The NMS pro-
cedure removes the less confident of every pair of detections
that overlap sufficiently according to the polygon overlap
criterion (as presented in Section IV-A), only if the difference
in orientation is lower than a threshold. Our NMS has thus two
parameters, the overlap threshold and the orientation difference
threshold. By setting the orientation difference threshold to 0,
we fall back to the simplified NMS procedure [31]. Using such
an orientation difference threshold is meant to allow detections
of surgical instruments crossing each other.
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Fig. 6. Original bipolar forceps (upper part) SVMmodel (top) and its piecewise
approximation (bottom). Left column corresponds to the tool class responsemap
and right column to the background class response map. Cool colors represent
negative SVM weights, warm color represent positive SVM weights and null
weights are colored in yellow.

3) Benefits: Our learning-driven approachmakes no assump-
tion about the texture or shape of the object. By conducting an
exhaustive search we can detect an arbitrary number of tools, at
any position and orientation in the image. Finally, the non-max-
imum suppression allows us to detect tools crossing each other.
In Section V, we show a significant improvement over all base-
lines.
4) Computational Cost: Using a two-stage approach is also

beneficial speed-wise. Assuming a restricted depth range, se-
mantic labelling can be applied over the image at a single scale,
which is common practice in street scene labelling [36]. From
the learned model, we prepare an exhaustive set of templates to
cover every possible scale and orientation. Using a piecewise
approximation of the shape template, integral images over the
semantic labelling results can be leveraged to directly detect
tools at different scales and orientations without having to re-
compute features. This is key for high speed detections [35] and
it makes the detector eligible for efficient parallel computing.

C. SVM Training Details

In this subsection, we explain the strategy used to create a
tool specific SVM model. We train models of size 125 300
pixels, with a width/height aspect ratio being kept fixed when
preparing the exhaustive set of templates at multiple scales and
orientations.
1) Training Data: The annotated dataset described in

Section II enables us to generate training samples. All positive
samples (i.e., showing a tool) are aligned to compensate for
translation, scale, and rotation. Compensated training images
(as shown in Fig. 7(d)) respect the following parameters: the
tool is vertically centred at a 30-pixel distance from the left
image border, with a shaft width of 40 pixels (considered to
be scale 1), and at orientation 0 . Then, multiple options for
generating the training samples exist, of which we consider
three:
1) semantic labelling maps (see

Section III-A and Fig. 7(b)).

Fig. 7. SVM inputs. Top rows correspond to the tool class response map and
bottom rows to the background class response map. (a) Negative. (b) Semantic
labelling data. (c) All instruments annotation. (d) Single instrument annotation.

2) Annotations of all surgical instruments (see Fig. 7(c)).
3) Annotation of a single surgical instrument (see Fig. 7(d)).

While semantic labelling maps (alternative (1)) represents best
the data the classifier will receive at test time, they are somewhat
noisy. This noise makes it difficult to learn the shape of the
surgical instrument of interest. To remedy this, we propose to
create binary images using surgical instrument annotations. In
the “tool” class response map, annotated surgical instruments
are in white and the rest of the image in black (the “background”
class response map being the reverse case). These binary images
can be considered as ideal semantic labelling results (alternative
(2)). For the last alternative we also use annotations, but this
time only the one surgical instrument of interest is in white and
the rest of the image, including neighbour surgical instruments,
is in black.
Negative images are randomly sampled from a uniform dis-

tribution for the “tool” class response map. The “background”
class response map is created as the opposite image (Fig. 7(a)).
Using the opposite image is meant to mimic the ideal semantic
labelling case. For the uniform distribution, we consider two al-
ternatives: a) a binary distribution where pixels can only have
the value 0 or 255, and b) grey-scale distribution [0, 255] to
match with semantic labelling data inputs. We report below ex-
perimental results on the effect of different training samples.
2) Regularisation: Regularisation is an important aspect for

SVM training. Since we know that we are operating on a two
dimensional domain, we consider modifying the vanilla SVM
formulation shown in (1) (see [37]), to include a regularisation
term that promotes a 2d spatial smoothness prior [38].

(1)

(2)
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where are instance-label pairs,
is the loss function and is a penalty parameter. The

matrix can be decomposed as shown in (3). The regularisa-
tion matrix encodes the 2d spatial structure.

(3)

In (4), we develop the link between the standard SVM formula-
tion and the one using regularisation via . It can be seen that the
2d prior can be encoded via a simple transformation of the input
data (via ), allowing the use of unmodified SVM training
code. At test time we use the resulting , without needing to
change the input data.

(4)

The 2d spatial smoothness in the regularisation matrix is per-
formed by enforcing 4-connected pixels to have close values.
In case of a 4-pixel image (a, b, c, and d being its four pixels),
the regularisation matrix to use is represented in (5). For com-
parison, (6) and (7) illustrate the regularisation term with and
without 2d spatial smoothness.

(5)

(6)
(7)

For creating the regularisation matrix, only two parameters
are necessary: the number of rows and columns of SVM training
samples. is computed once beforehand, and simple trans-
formations of the SVM samples via and are applied
during the training process. In Section V, we evaluate the im-
pact of using such regularisation schema.

IV. VALIDATION STUDIES
In this work we aim at detecting tools, and leave aside the

problem of tool categorisation. When evaluating the detection
of a specific tool we ignore all false positives on other annotated
tools. This is similar to the protocol used for pedestrian detection
[31], where regions with “crowds” are ignored (related class that
triggers false positives for pedestrians). False positives on other

tools are considered part of the (fine-grained) tool classification
problem, left for future work. Similarly to the scheme laid out by
Dollar et al. [39], a full image evaluation is performed between
the set of candidate detections obtained by the detection method
and the corresponding set of references. We use the log-average
miss rate to summarise detector performance, computed by av-
eraging miss rate at nine false positives per image rates (FPPI)
evenly spaced in log-space in the range to 10 . The min-
imum miss rate is used for curves that end before reaching the
FPPI upper bound.
Train and test image sets have been presented in Section II-A.

The train set has been used for every learning process, while
detector performances have been evaluated over the test set. In
the following, we start by presenting the evaluation metrics con-
sidered to obtain performance results. Then, to understand the
difficulty of detecting surgical tools from in-vivo surgery im-
ages, we consider different baselines for comparison with our
proposed method.

A. Evaluation Metrics
Multiple metrics are of interest depending on the specific

applications in mind, and the type of reference available (i.e.,
manual annotation). In the experimental Sections V-A and V-C,
we consider the following four evaluation metrics. The first
metric provides overall tool detection performance, the second
and third ones further assess the pose estimation quality through
orientation and tip position accuracy. The fourth one evaluates
the semantic labelling quality.
1) Polygon Overlap: Due to surgical tools' elongated

shapes, we evaluate detections using bounding polygons in-
stead of bounding boxes aligned to the image border. We use
the traditional “intersection over union” criterion to count false
positives and false negatives [40]. Since a small difference
in orientation between two elongated polygons leads to small
overlapping areas, we consider true detections to be those with
an with the ground truth annotation. Arguably
this evaluation improves over previous work that considered
only bounding box overlap [16].
2) In-Plane Orientation Difference: Given many in-plane

tool rotations during surgeries, we propose for every true detec-
tion obtained at a fixed rate of FPPI to observe the error
in the orientation estimation. The orientation difference is com-
puted in degrees between a detection and its corresponding ref-
erence. To display the results, we plot the percentage of correct
detections orientation-wise as a function of the difference in ori-
entation.
3) Tool-Tip Distance: In some applications, the tool-tip posi-

tion is more relevant than the tool-body pose estimation. We can
thus measure the Euclidean distance between a detection and
its corresponding ground truth tool-tip. To ensure more mean-
ingful results, we compare methods at a fixed rate of false
positives per image, and disregard detections deviating by more
than 45 degrees from the ground truth. This measure is opti-
mistic given many false positives, but gives an upper-bound on
the tool-tip precision when detections are correct.
4) Segmentation Quality: Our dataset annotations allow us

to generate per-pixel ground-truth label maps. The results of the
next section show that using pixel-wise labelling enables better
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Fig. 8. Illustrated approach workflow. From an initial image of se-
mantic labels, a set of morphological operation is applied in order to retrieve as
many skeletons as surgical instruments. Candidate detections are identified after
connected component labelling and Hough line fitting. (a) Input mask. (b) Di-
lation. (c) Skeletisation. (d) Connected components labelling. (e) Hough trans-
form. (f) Output detections.

detection, thus we are interested in evaluating this intermediary
step. Since in the dataset all tools have similar local appearance,
we evaluate all tools as a single class. We report the average
(per-class) pixel classification accuracy of tools versus back-
ground.

B. Baseline: Semantic Labelling

We use the open source toolbox [34] as a baseline
for semantic labelling. It implements a state-of-the-art method
(inspired by [28]) based on boosted decision trees built on top
of features comprising filter banks, HOG, and RGB colour. The
main difference between and is the
former's use of more hand-crafted features and pooling regions.

C. Baseline: Single-Stage Detection

is a real-time detection method for texture-less
objects [41]. It is based on fast matching of oriented gradient
templates. Surgical tools being mainly texture-less objects,

is expected to perform well, and thus serves as a good
baseline.

is the classifier we use for semantic la-
belling (Section III-A). Now we use it for detection, to serve
as a (single-stage) baseline. We use the same configuration as in
[32], but extending the search space to cover position, scale, and
orientation. This detector has shown significantly better results
than the classic HOG + linear SVM approach (on pedestrian
[31], [32] and face detection [42]). This baseline is a reference
point for the performance of a strong generic object detector.

D. Baseline: Two-Stage Detection

In addition to the single-stage detection baselines, we con-
sider four methods that operate on semantic labelling results
(first stage), to produce tool detections (second stage). We
first describe a naïve two-stage baseline approach, named

. Then we present multiple variants of our proposed
pipeline, each one using a different combination of semantic
labelling technique and shape-model creation approach.

Fig. 9. Fixed shape template illustration for a suction tube. Red pixels are as-
sociated with a weight of 1, blue pixels with a weight of and green pixels
with a weight of 0.

TABLE II
FEATURE CHANNELS IMPACT ON SEMANTIC LABELLING ACCURACY

TABLE III
CLASSIFIER PARAMETERS IMPACT ON SEMANTIC LABELLING ACCURACY

is a naive two-stage approach, performing classic
morphological operations on top of the se-
mantic labels. This hand-crafted method exploits the geometry
of surgical instruments by searching exclusively for tubular
shapes. Fig. 8(a) illustrates semantic labelling results (obtained
as described in Section III-A), used as input of this method.
To reduce labelling noise we apply a double morphological
dilation on the input mask, using a structuring element of size
5 5 (Fig. 8(b)). Tubular shapes can be reduced to only their
barycentre lines (or “skeletons”) to be identified and counted,
thus we extract topological skeletons [43] to summarise the
tool presence evidence (Fig. 8(c)).
Assuming a minimal size for surgical instruments in the

images, an additional noise reduction step is performed. After
computing connected components, only skeletons with a size
larger than an empirical threshold are kept (Fig. 8(d), one
colour per connected component). These components are then
used to estimate straight lines via Hough transform (Fig. 8(e)).
Each line from the Hough transform, longer than a specific
threshold, is considered as a candidate detection and enriched
with a bounding polygon and a score computed proportionally
to the line length. Finally, a greedy non-maximum suppression
iteration, as presented earlier in the paper, is performed based
on their scores for a final set of detections presented in Fig. 8(f).

uses a linear classifier model, but instead of
learning the weights it uses a hand-crafted template. Using the
idealised shape of the surgical instrument of interest, a template
of 125 300 pixels is created. Pixels inside the shape have a
weight of 1, the ones around the shape boundaries a weight of
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Fig. 10. Suction tube SVM models for each type of positive images with the spatial regularisation, and without for the last case. Tool class response map in the
top row and background class response map in the bottom row. (a) Semantic labelling data. (b) All instruments annotations. (c) Single instrument annotations.
(d) Single instruments annotations (no regularisation).

Fig. 11. Detection results for the suction tube (using the polygon overlap
metric) vary depending on the type of positive examples used to learn the SVM
model. The log-average miss-rate (LAMR) is reported in brackets.

, and the rest a weight of 0 (see Fig. 9). The linear classifier
is applied over the semantic labels.

operates identically to ,
but detections are obtained on top of the [34] semantic
labels instead of the ones obtained from (see
Section V-A). This baseline allows us to compare the quality of
our semantic labels against an alternative.

is the name of our proposed method, de-
scribed in Section III, which uses a linear SVM to do detection
on top of the semantic scores.

V. RESULTS

Our approach has been implemented in C++, using CUDA
libraries to perform parallel computing. Results were obtained
on a DELL Precision T8600, Intel Xeon E5-2620 v2 @2.10
GHz (CPU), NVIDIA Titan Black (GPU). At test time, detectors
were evaluated using a 4-pixel stride in both spatial dimensions,
and a 5 orientation step (i.e., 72 orientations are evaluated). On
a 612 460 pixel image, between 80 ms and 100 ms are nec-
essary for feature extraction and pixel-wise classification (i.e.,
first stage), while the pose estimation (i.e., second stage) is per-
formed in around 80–90 ms. The overall system runs at about a

Fig. 12. Detection results over the NeuroSurgicalTools dataset, using the
polygon overlap metric. Please refer to section IV for details on the evaluation
procedure and compared approaches. The log-average miss-rate (LAMR)
is reported in brackets. (a) Suction tube detection performance. (b) Bipolar
forceps (upper part) detection performance.

speed of 5 Hz, while a complete training requires approximately
2 hours. To ensure a fair comparison, we match the parameters
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Fig. 13. Orientation and tip position tool pose parameters evaluation at the FPPI rate. Top row corresponds to a comparison based on the in-plane orientation
difference metric. Bottom row represents a comparison based on the tool-tip distance metric. (a) Orientation difference metric (Suction tube). (b) Orientation
difference metric (Bipolar forceps). (c) Tool-tip distance metric (Suction tube). (d) Tool-tip distance metric (Bipolar forceps).

of each method as closely as possible (i.e., training data, evalu-
ated scales, and orientations).
Section V-A presents the semantic labelling results (input

for ), Section V-B analyses the design
space for the SVM training, and finally
Section V-C presents and compares the detection results of the
different methods.

A. Semantic Labelling Results
For completeness, we also include the trivial classifier that

considers every pixel as background.
Table II reports the impact of different feature chan-

nels on the labelling accuracy. It shows that the proposed
meaningfully improves over our strong

baseline. As expected, colour ( channels, colour names
[33]) and texture are strong cues ( filter bank [28], [34]),
while position ( ) is rather weak. Figs. 5 and 15 provide
examples of obtained labellings.
For the + + + features combination, Table III re-

ports the impact of the classifier parameters. It indicates that
larger model window size or increased number of weak classi-
fiers has very little to no effect on the semantic labelling accu-
racy. The decision trees depth parameter is not studied as it can
not be modified.

All subsequent experiments using the se-
mantic labelling are performed using 500 depth-2 decision trees,
a 41 41 pixel model window, and + + + as feature
channels.

B. SVM Model Training

This section illustrates the impact of various design choices
and SVM model creation parameters. An accurate surgical in-
strument model is crucial for high detector performances.

performances are reported in Fig. 11 for
the three positive samples alternatives considered (see
Section III-C and Fig. 7): (1) semantic
labelling scores, (2) annotations of all surgical instruments, (3)
annotations of a single surgical instrument.
Neither the value of the regularisation parameter nor the use

of regularisation with a 2d spatial smoothness prior improve the
overall quality of the detections, however the learned model is
noticeably smoother (see Fig. 10).
All following experiments with SVM models are performed

using a value of 1, the spatial regularisation term, a binary dis-
tribution for sampling negative examples, and single instrument
annotations as positive examples.
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Fig. 14. Log-average miss rate as a function of the overlap threshold for the
suction tube (polygons overlap metric).

C. Detection Results

In the following, pose estimation results are reported for the
“suction tube” tool (the most common one in the dataset), and
for the “bipolar forceps” tool (the second most common).
Fig. 12 reports global tool position results based on the

polygon overlap evaluation metric. Large differences in detec-
tion quality amongst themethods are visible. performs
quite poorly in this domain, showing that using an off-the-shelf
detector is not enough. performs signifi-
cantly better, most likely due to its more flexible model. Still,
generic detectors achieve a rather poor performance, reaching
less than 50% recall at false positives per image (for
suction tube). On the other hand, the hand-crafted
approach provides better results, indicating that pixel-wise
segmentation is a strong cue. Finally, , our
two-stage approach, obtains the best results thanks to its data
driven learning, instead of hand-crafting features or shape cues.
On this metric, at false positives per image, the miss-rate
is reduced by a third with respect to the best generic detector.
The poor result of compared to

indicates that high quality semantic labels are
key for good detection. The good results of our
show the utility of the proposed two-stage approach.
For candidate detections obtained by each method, the pose

estimation quality is further assessed using orientation and tip
position parameters, obtained at a fixed rate of false posi-
tives per image (see Fig. 13).
As highlighted in Fig. 13(a), all the compared approaches ex-

hibit a similar behaviour regarding orientation accuracy for suc-
tion tube detection. Given models being tested with a 5 orien-
tation step, the best estimation with less than a 5 difference is
achieved 70% of the time with our . For the

, less than 20% of detections have an orien-
tation deviating by 170 -180 , indicating a well placed detec-
tion regarding its global position, only facing the opposite direc-
tion. Noisy semantic labelling results around the tool-tip region,
heavily focused by the shape model learning strategy, as long as
occlusions can induce such a shift in orientation. Regarding the
bipolar forceps surgical instrument (illustrated Fig. 13(b)), such

a confusion in orientation is far less important, happening only
for 5% of obtained detections with the .
At a similar miss-rate of 15% at false positives per

image, outperforms at suc-
tion tube orientation estimation by a small margin. A 5% gap
between the two methods is visible for a difference in orien-
tation lower than 20 . Often the semantic labelling quality is
quite noisy and highly irregular along the tool, with background
pixels being misclassified as tool pixels more often when closer
to the tool-tip region. When combined with high tilt values
and partly occluded tips, the hand-crafted shape weights used
for are sometimes able to compensate for
such adverse conditions. A better orientation estimation is
then achieved at the cost of a shift alongside the tool shaft
thanks to stronger weight values within the tip region. The
same conclusion does not hold for the bipolar forceps, which
indicates that small surgical tools, such as the suction tube,
are especially susceptible to these problems because of their
thinner tip region (i.e., modelled region).
Fig. 13(c) and (d) show results using the tool-tip dis-

tance metric (Section IV-A). Both and
have similar performances under this metric,

with less than a 20-pixel error for a 50% recall (for the suction
tube). Between and DarwinDetector, the
10% recall difference for a 40-pixel suction tube tip error
indicates the impact of the semantic labelling quality around
tool boundaries. A 20% recall improvement for a 20-pixel
tip error can be noted between the and the

when using a suction tube model, pointing out
the benefits from using sophisticated shape modelling towards
the tool-tip estimation. With our proposed ,
the bipolar forceps tip position is overall better estimated than
for the suction tube. At a 60-pixel tip error, a recall of 83% is
obtained for the bipolar forceps, whereas a recall of 67% only
is achieved for the suction tube. Aside from tool tip occlusion,
semantic labelling noise appears to be less influential for tools
with a large enough tip region, the bipolar forceps being bigger
than the suction tube for a similar microscope zoom value.
Fig. 14 shows the effect of selecting different overlap thresh-

olds for the evaluation. The results obtained at the selected value
of 25% are similar to the ones at the classic 50%. We can also
notice that our proposed obtains low log-av-
erage miss-rate for a large range of overlap thresholds.
In the following pages, visual results are displayed, starting

with Fig. 15 showing semantic labelling results obtained with
the where tool pixels are marked in green.
Then, Fig. 16 illustrates detection success and failure modes ob-
tained with our proposed using a suction tube
shape model. Finally, Fig. 17 presents side-by-side detection re-
sults obtained with the different tool detectors employed.

VI. DISCUSSION

A. Two-Stage Approach
Our proposed two-stage approach reaches top performance,

however success or failure cases depend critically on the (first)
semantic labelling stage. As illustrated by the results between
the and the , where only the
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Fig. 15. Semantic labelling results obtained from our method ( configuration). Detected tool pixels are marked in green. The rightmost
column shows some failure modes.

first stage differs, improving the semantic labelling stage dras-
tically improves overall results.
While using the method to perform the se-

mantic labelling task greatly improves over existing baselines,
the resulting maps are still noisy. The body of a surgical tool is
mainly well labelled whilst its edges and tool tip are not. Such
labelling errors lead to detection positioning errors, as reflected
in the tool-tip distance metric experiments (Fig. 13(c) and (d)).
The polygon overlap metric focuses more on the overall posi-
tion and orientation of the tool (not only the tip), and seems less
sensitive to such noise.
We observe that the semantic labelling struggles with very

tilted surgical instruments, making tool-ends go out of focus,
hence inducing a lot of blur in the image. In those cases, it hap-
pens that only 40% of a surgical instrument is correctly labelled,
making the shape template matching harder and more likely to
fail. Cases which involve noisy semantic labelling maps, tools
with high tilt values, and partly or almost fully occluded tip re-
gions have yet to be addressed properly. By improving the se-
mantic labelling results, or through the use of a tracking layer,
we expect tool-tip positions and orientations to be estimated
more accurately. The third and fourth columns of Fig. 16 show
some additional failure cases.

Our second layer currently assumes that the object shape
changes through rotation and scaling only. The remaining
degrees of freedom are expected to be handled by the learned
SVM template. Finding a way to handle tools that have articu-
lated elements remains to be explored in future work.

B. SVM Model
Even with hundreds of training samples, learning an accurate

tool-specific shape template through SVM training might be
difficult. With our current implementation choices, enforcing 2d
spatial smoothness in the SVM regularisation term has shown
to be ineffective to induce any noticeable improvements in the
detector performance. However, the resulting SVM models
tend to be visibly smoother indicating a proper behaviour of
the regularisation term. It might be that the piecewise approx-
imation of shape templates used to gain computational speed
(see Section III-B2) already enforces such spatial smoothness
(in a brute-force manner).
In our current setup, SVMmodels are not meant to learn how

to differentiate shapes of two similar surgical instruments. As
a result, the detection score over a suction tube obtained with
a suction tube SVM model can be hardly inferior to the one
obtained with a bipolar forceps SVM model. Performing tool
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Fig. 16. Success and failure cases using the approach with a suction tube model. Odd columns show original images, even columns show
detection results.

classification together with detection is not straightforward in
the current architecture. Our initial experiments indicate that
only subtle cues enable to distinguish amongst tools (e.g., hook
versus suction tube), and thus we believe that more discrimina-
tive features are needed to solve this fine-grained classification
task.

C. Evaluation Protocols
Assessing the performances of an object detection approach

can be hard as relevant evaluation protocols have to be defined
and corresponding evaluation metrics have to be used. Usually,
evaluation protocols are built in order to identify strengths and
weaknesses of an algorithm designed for a specific application.
In this paper, we aim to develop a method with as few assump-
tions as possible and thus we choose to use standard computer
vision metrics for evaluation, also with limited assumptions.
The first metric used, intersection over union criterion, is

state-of-the-art and widely used for object detection in computer
vision for overall good positioning. Developed to be used with
bounding boxes, we consider the intersection over union crite-
rion to also fit well with bounding polygons with an adaptation
regarding the overlap area threshold. Instead of a 50% overlap
threshold traditionally used, we decrease it to 25% because of
the nature of the elongated polygons. Small variations in orien-
tation can substantially lower the overlap area, and the point of
this metric is to assess of accurate location not correct pose esti-
mation. In retrospect, the traditional threshold could have been
used since we observed performances stability until a 60% area
threshold (see Fig. 14).
The second and third metrics used, are relatively straightfor-

ward methods used to evaluate accuracy in the pose estima-
tion of the object (i.e., correct orientation and tip position). It
has been previously used in similar works when using tracking
approaches [19] and in body pose estimation evaluations (e.g.,
[44]).
We did not evaluate our method within a precise medical ap-

plication, where potentially specific conditions could be used to
optimize models and search ranges, thus obtaining better detec-
tion results. Using standard metrics and evaluation protocols,

we already show better performances than baseline methods,
which supports the idea that our approach will provide high
quality in diverse applications.

D. Applications
Many solutions investigated to solve the surgical instrument

pose estimation problem require significant changes to oper-
ating rooms setup. Instead of relying exclusively on 2d video
signals (as presented here), some methods require additional
tags (e.g., RFID technology [45]). Such a technology is in the
early stages of use in hospitals, very few are equipped due to
installation costs and perceived return over investment. More-
over, studies are not in agreement with each other regarding the
threat assessment of this technology on the patient and on other
devices of an operating room [46], [47].
Only requiring the video feed from a surgical microscope,

which is a standard medical equipment for most hospitals
throughout the world, our proposed approach can directly be
used in existing operating rooms. Currently running at ,
our method is close to fast enough, and will reach frame-rate
processing (25 Hz) in only a couple of hardware generations,
or after speed-tuning the implementation (e.g., to use GPUs
like in [35]).

VII. CONCLUSION
Surgical instrument detection and pose estimation are key

components for the next generation of context-aware computer-
assisted surgical systems as for many medical applications such
as surgical video indexation or surgeons' technique comparison.
In order to preserve current operating room setup, we focus our
work on 2d videos from existing surgical microscopes instead
of using additional sensors. In this paper, we propose a new ap-
proach for surgical tool detection in 2d images that makes no as-
sumptions on the number of tools, their shape or position in the
image. The first stage of the approach performs a pixel-wise se-
mantic labelling while the second stage matches global shapes.
Evaluated on our newly introduced in-vivo dataset, this com-
bined approach achieves better detection results than state-of-
the-art baselines.
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Fig. 17. Detection examples using a suction tube model (with semantic labelling results overlaid in green when used). From left to right: original image,
, , , .

Future work will focus on improving the quality of the se-
mantic labelling stage as long as the detection quality. We will
also explore coupling detection with classification to be able
to distinguish between different surgical instruments. Finally,
we plan to improve our dataset by adding more surgical tools'
classes and by increasing the diversity within each one.
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