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Abstract— Traffic sign recognition has been a recurring appli-
cation domain for visual objects detection. The public datasets
have only recently reached large enough size and variety to
enable proper empirical studies. We revisit the topic by showing
how modern methods perform on two large detection and
classification datasets (thousand of images, tens of categories)
captured in Belgium and Germany.

We show that, without any application specific modification,
existing methods for pedestrian detection, and for digit and face
classification; can reach performances in the range of 95% ∼
99% of the perfect solution.

We show detailed experiments and discuss the trade-off of
different options. Our top performing methods use modern vari-
ants of HOG features for detection, and sparse representations
for classification.

I. INTRODUCTION

TRAFFIC SIGN RECOGNITION (TSR) gets consider-
able interest lately. The interest is driven by the market

for intelligent applications such as autonomous driving [1],
advanced driver assistance systems (ADAS) [2], mobile
mapping [3], and the recent releases of larger traffic signs
datasets such as Belgian [3] or German [4] datasets.

TSR covers two problems: traffic sign detection (TSD)
and traffic sign classification (TSC). TSD is meant for the
accurate localization of traffic signs in the image space, while
TSC handles the labeling of such detections into specific
traffic sign types or subcategories.

For TSD and TSC numerous approaches have been devel-
oped. A recent survey of such methods and existing datasets
is given in [5].

A. Contributions

The contribution of this work is three-fold:

• We show that top performance can be reached using
existing approaches for pedestrian detection [6] and face
recognition [7], [8], without the need to encode traffic
sign specific information.

• We provide an extensive evaluation on two large Belgian
and German traffic sign benchmarks for both detection
and classification.

• We show on these datasets detection and classification
results in the range 95% ∼ 99% of the perfect solution.
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Fig. 1. Top Image: a typical image from BTSD together with the detected
traffic signs. Bottom images: Each block shows true positives from the 3
superclasses (rows) spotted by our ChnFtrs detector. From left to right, the
first block contains true positives from the GTSD, the second from BTSD,
and the third examples of false positives from either dataset.

II. TRAFFIC SIGN DATASETS

In this paper we evaluate traffic sign detection and clas-
sification on four datasets: the German Traffic Sign De-
tection Benchmark (GTSD) [9]1, the German Traffic Sign
Recognition Benchmark (GTSC) [4] and the Belgium Traffic
Sign Dataset with its split for Detection (BTSD) [3] and for
Classification (BTSC) [10]2.

The choice of the datasets is motivated by their large
amount of annotations, diversity of the content and classes,
the availability of a split for benchmarking separately TSD
and TSC. The GTSD recently was subject to a competition,
making it easier to compare various approaches. No other
dataset surveyed in [5] has a comparable size or number of
classes.

To assess detection performance we use GTSD and BTSD.
Both are split in 3 main categories (or superclasses) based
on their shape and color:

(M) mandatory: round, blue inner, white symbols.
(D) danger: (up) triangular, white inner, red rim.
(P) prohibitory: round, white inner, red rim.
Table I shows the training/testing split and the number

of traffic signs per superclass for the detection task. GTSD

1http://benchmark.ini.rub.de
2http://homes.esat.kuleuven.be/~rtimofte



TABLE I
DETECTION BENCHMARKS WITH (M)ANDATORY, (D)ANGER, AND

(P)ROHIBITORY SUPERCLASSES.

Training Testing
images annotations images annotations

GTSD M D P M D P
600 113 154 370 300 50 62 161

BTSD 5 905 M D P 3 101 M D P
+16 045 1 026 765 891 +583 570 795 580

TABLE II
CLASSIFICATION BENCHMARKS, NUMBER OF INSTANCES FOR TRAINING

AND TESTING

Training Testing Classes Diversity
GTSC 26 640 + 12 569 12 630 43 ∼ 30 images/sign
BTSC 4 591 2 534 62 ∼ 3 images/sign

provides fully annotated images for testing. The BTSD
dataset provides only partially annotated positive images,
thus additional 583 images without traffic signs are used for
assessing the false positive rates.

For classification GTSC provides annotations for 43 dif-
ferent classes, BTSC distinguishes 63 classes. The men-
tioned detection superclasses cover most of the classification
classes, but not all of them.

Table II shows the number of samples in Belgian and
German datasets (BTSC and GTSC) used to benchmark our
classification approaches. Both come with their own split into
training/validation and testing data. GTSC has more image
samples than BTSC, but a smaller number of traffic sign
classes, and a fewer number of physically distinct traffic
signs captured by these images. GTSC contains around 30
images per each sign tracked into the video sequence, while
BTSC contains on average 3 images per each sign as seen
by different cameras at 3 different time moments.

There is no direct mapping between the class labels in
BTSC and GTSC. For instance, the speed limit signs form
a single class in BTSC, while they spans several classes in
GTSC.

In section III we describe the detection methods evaluated
in section IV. Section V describes the classifications methods
we evaluate in section VI. Finally in section VII we present
the results obtained when joining detection and classification,
and offer some concluding remarks in section VIII.

III. TRAFFIC SIGN DETECTION

Traffic sign detection is a classic instance of rigid object
detection. It is currently accepted that histogram of oriented
gradients (HOG) is an effective way to capture shape infor-
mation. The integral channel features detector first introduced
by Dollar et al. [11], builds upon these features to provide
excellent quality for the task of pedestrian detection, sig-
nificantly improving over the traditional HOG+linear SVM
combination [12]. More recently, variants of the integral
channel features detector have shown to reach high speed
(50 fps) [13], [14], and top quality, improving over most ex-

isting methods for pedestrian detection [6] (while still using
a single rigid template per candidate detection window).

In this paper we show we can use the integral channels
features approach to reach top performance for traffic signs
detection, without any application specific changes or special
features.

A. Integral Channel Features Classifier

The integral channel features classifier (ChnFtrs) is a
family of boosted classifiers based on discrete Adaboost. We
use the same basic setup as described in [11]. The weak
learners used for boosting are depth-2 decision trees, where
each node is a simple decision stump, defined by rectangular
region, a channel, and a threshold. As channels we use
the proposed 6 orientation channels, 1 gradient magnitude
channel, and the 3 channels of the LUV color space (see
Figure 2 first row). Our final classifier is a weighted linear
combination of boosted depth-2 decision trees.

B. Detection using different aspect ratios

The training and testing annotation bounding boxes are
tight around the traffic signs. The bounding boxes of traffic
signs rotated around the gravity axis have a width to height
ratio smaller than the frontal ones. Since the correct per-
spective rectification is not available, for training we align
the example by stretching the annotated traffic sign to our
squared model window. During testing, besides evaluating
the model at different scales, we also consider different
aspect ratios. In the baseline setup, we use 50 scales and
5 ratios resulting in 250 image sizes.

C. Training setup

While the two datasets are different in the number of
traffic signs and their sizes, we trained all models using
the same setup. We perform in total 4 rounds of training
with increasing numbers of weak learners (50, 100, 200 and
400). Each round adds 2 000 hard negatives to the training
dataset, randomly sampled in round 1, and via bootstrapping
in further rounds. We use a model size of 56× 56 pixels.

As the number of possible stumps is large (all possible
rectangles in 10 different channels), we train the detector
by using a randomly sampled subset. The feature pool is
generated by randomly sampling 80 000 candidate rectan-
gles. Figure 2 shows the model of the “danger” superclass
trained on the GTSD. Training takes roughly 45 minutes per
superclass.

D. Testing setup

We perform testing using our own GPU enabled imple-
mentation of the integral channel features detector. Our code
is based on the open source release of [14]. Each detector
template is applied exhaustively at all image positions in a
scale space of 50 scales and 5 ratios. We set the scale space
search range according to the specifications of the datasets
(on GTSD 16 × 16 to 128 × 128 pixels, on BTSD 16 × 16
to 256 × 256 pixels). We search for traffic signs from ratio
0.8 to 1.2 (width/height).
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Fig. 2. Features picked during training in the 10 feature channels for the "danger" class. From left to right, 6 orientation channels, gradient magnitude,
L channel, U channel, V channel. (Heatmap normalized per channel)

Fig. 3. Precision/Recall curves on BTSD for ChnFtrs and VJ + HSI
detectors, prohibitory super-class at different overlap ratios.

IV. DETECTION EXPERIMENTS

Table III summarizes the detection performance by com-
paring the area under curve (AUC) of different detectors
on GTSD and BTSD on all three superclasses. We trained
and evaluated the proposed detector in two different con-
figurations. “Ours Baseline” is trained using the setting
described in preceeding sections. By using these reasonable
settings, we are able to train our detector fast (45 minutes
per superclass) and the testing setup is very similar to the
one described in [14], theoretically allowing to use the same
approach for high speed detections. Currently, the detector
runs at around 2.5 Hz on an Intel Core i7 870 with a Nvidia
GeForce GTX 470 GPU.

GTSD: The second configuration (“Ours Competition”)
is optimized to reach the highest possible detection quality
for the GTSD competition (at expenses of training and testing
speed). The sliding window searches over 100 scales and 15
ratios and runs at 0.35 Hz. Further we followed the recom-
mendations of [6], we globally normalize training and testing
images (illumination normalization); for the mandatory class
we additionally trained a multi-scale model to reach our best
competition result (48× 48 and 96× 96 pixels).

The method “Ours Competition” reaches perfect detection
scores in two of the three classes (one other competitor
matches that performance, see Table III). The average overlap
of our detections with the ground truth annotations lies above
87% for all superclasses.

BTSD: In the BTSD dataset our detector also shows
good localization of the bounding boxes (see Figure 3), still

reaching 89.8 AUC for an required overlap of 80%. The
jumps in recall can mostly be explained by data mislabeling.
Signs like the “Zone 30” sign, as shown in Figure 4(b),
belong to the “danger” class, but are annotated as a whole
and not only the circular red sign (that our classifier detects),
this creates artificial false positives. The lower performance
obtained when evaluating a detector trained on one dataset
and tested on the other shows that there is a significant
dataset bias (see Table III).

Figure 4 shows further peculiarities of the datasets. The
blue sign showing bikes and/or pedestrians are not considered
part of the “mandatory” class, despite corresponding to the
semantic category, and thus counted as false positives by
our detector (Figure 4(c)). The BTSD dataset contains chal-
lenging samples like strong perspective views, occlusions,
rotated and damaged traffic signs (Figure 4(a)). The few
traffic signs that our detector misses are mostly instances
of the aforementioned categories.

The VJ+HSI detector (in figure 3) was introduced in [3],
used in [2], and serves as a reference point. It uses a
segmentation step based on a learned set of color-based
thresholding methods which rapidly prune the regions of
interest, leaving an average of 3 thousands candidates per
2 megapixels image. The regions of interest are the input
for a Viola-Jones cascade trained using Haar-like features
extracted on HSI color channels. We train over BTSD one
specialized cascade per superclass (as in [3]), no traffic sign
is used as negative.

V. TRAFFIC SIGN CLASSIFICATION

The classification of traffic signs is a classic case of
supervised rigid objects classification. Face and digit im-
age classification are closely related tasks since these two
categories usually present limited variation in pose and
appearance. Many of the methods used on these two domains
also apply to traffic sign classification.

Our base pipeline consist of three stages: features extrac-
tion, dimensionality reduction, and classification. Each of
them is detailed in the following subsections. We will con-
sider a large number of feature representations, dimensional-
ity reduction techniques, and classification methods that had
success for digits and faces. Section VI presents empirical



TABLE III
DETECTION RESULTS ON GTSD AND BTSD BENCHMARKS FOR 0.5 OVERLAP (AUC IN [%]).

GTSD BTSD
Team Method M D P M D P

Ours Baseline ChnFtrs, trained on GTSD 91.91 100 99.34 92.55 95.76 84.60
Ours Baseline ChnFtrs, trained on BTSD 76.38 78.5 91.06 97.96 97.40 94.44

Ours Competition ChnFtrs, trained on GTSD 96 .98 100 .00 100 .00 94.79 96.40 86.51

[3] VJ+HSI, trained on BTSD 61.12 79.43 72.60 92.32 95.91 84.27
wgy@HIT501[9] HOG+LDA+SVM 100.00 99.91 100.00 – – –

BolognaCVLab[9] MSER+HOG+SVM 95.76 98.72 99.98 – – –
LITS1[9] HOG+SVM 92.00 98.85 100.00 – – –

wff[9] HOG+CNN 97.62 99.73 −− – – –

(a) difficult conditions

(b) unexpected annotations: red box
refers to annotation, but the detector usu-
ally detects the greeen box.

(c) unclear class: these signs
do not belong to the "pro-
hibitory" class

Fig. 4. Failure cases due to: difficult conditions, unexpected bounding box
annotations or unclear class belongings.

evaluations of the different combinations and describe the
trade-offs of selected combinations.

A. Features extraction

Since traffic signs are designed to be of use for color blind
people, the most discriminative features for classification are
the inner pattern and the shape, the color is less important.
In preliminary experiments we tested with color-dependent
features but the results were unsatisfactory when compared
with the grayscale based features and came at the price
of increased computational cost. Color matters more for
detection than for classification.

In our classification experiments we consider the following
features:

I: grayscale values of the cropped traffic sign images
rescaled to 28 × 28 pixels. The I features are 784-
dimensional.

PI: the pyramid of histograms of oriented gradients (HOG)
features with their optimal parameter settings as
in [15], where top results were achieved for handwrit-
ten digit and face classification. PI provides a 2172-
dimensional descriptor.

HOG1, HOG2, HOG3 : HOG features as precomputed

for GTSC [4]. Three settings are provided, the dif-
ference among them is given by the number of HOG
cells and the extraction grid. HOG1 and HOG2 are
1568-dimensional, while HOG3 is 2916-dimensional.

B. Dimensionality Reduction

Speed-wise, it is beneficial to reduce the dimensionality of
the features. We consider LDA for discriminatively project-
ing the original feature representations to lower manifolds.
We also inspect using SRLP and INNLP that provide em-
beddings which reveals different structural affinities in the
data than the direct Euclidean distances.

All the features are l2-norm normalized to sum to 1, before
and after projection or before classification.

In the following we shortly review the dimensionality
reduction techniques used. The reader is referred to the
original works for more details.

1) Linear Discriminant Analysis (LDA) [16], [17]: is
an embedding technique, which maximizes the inter-class
variance while minimizing the intra-class variance. The LDA
projection thus tries to best discriminate among classes. The
solution can be obtained solving an eigenvector problem. By
construction, LDA can lead to an embedding space with a
number of dimensions less than the number of classes.

2) Sparse Representation based Linear Projection
(SRLP) [10]: is a variant of Locality Preserving Projections
(LPP) [18]. LPP itself is a linear approximation of the
nonlinear Laplacian Eigenmap [19] method aiming at
preserving the local affinities from the original space
into the embedding. The algorithmic procedure employs
an adjacency graph construction, setting edge weights,
and finally solving a generalized eigenvector problem
formulation. SRLP differs from LPP in that it preserves the
weights from the sparse representation (see Section V-C.2)
as affinity measures in the linear embedding space.

3) Iterative Nearest Neighbors based Linear Projection
(INNLP) [8]: is another LPP variant and goes similarly to
SRLP, the INN coefficients (see Section V-C.3) replacing
those from the sparse representations in the graph construc-
tion.

In the experiments of section VI we consider the following
combinations:



LDA I, LDA PI, LDA HOGx : Linear Discriminant
Analysis (LDA) projections of the original image
feature representation (I, PI, HOG1, HOG2, or
HOG3). Note that we use regularized LDA [20] (as
in [10]).

SRLP I, SRLP PI, SRLP HOGx : Sparse
Representation-based Linear Projections (SRLP)
of the original image feature representation. We use
the regularized version of SRLP as introduced by [10]
with supervised learning, that is, in training, the sparse
representations are computed over samples sharing
the same class with the projected one.

INNLP I, INNLP PI, INNLP HOGx : Iterative Nearest
Neighbors-based Linear Projections (INNLP) of the
original image feature representation. We use the
supervised and regularized settings as originally
introduced by [8].

Merged features : combining different features is found
beneficial, and we use here the direct merging of the
feature representations as concatenation of l2 normal-
ized compounding features.

C. Classification

We consider the following classification methods for our
experiments:

1) Nearest Neighbor Classifier (NN): picks the label
of the training sample which provides the minimum least
squares error to the query.

The following two classifiers use also the least squares
but are not constrained to one training sample, they linearly
combine all the training samples in a least squares sense. One
is using the regularization to promote sparsity of the coef-
ficients (SRC), the other imposes the weights and searches
for the best combination (INNC).

2) Sparse Representation-based Classifier (SRC) [7]:
uses the so-called sparse representation (SR) which aims at
minimizing the number of non-zeros coefficients in the linear
decomposition of a query sample over a set of training sam-
ples. This, in practice, is obtained solving an l1-regularized
least squares formulation. In all our experiments, we use the
Feature Sign algorithm [21] and fix its regulatory parameter
to 0.05.

The Sparse Representation-based Classifier (SRC) [7]
decision is taken based on the corresponding residuals to
each class training samples. For speed, we directly use
the corresponding class coefficients in magnitude from the
representation, as in [10].

3) Iterative Nearest Neighbors Classifier (INNC) [8]:
is based on a recently introduced (sparse) representation,
the Iterative Nearest Neighbors (INN) representation, ob-
tained by approximately solving a constrained least squares
formulation. The coefficients from the INN representation
are imposed and sum up to 1, and their decaying rate is
controlled by a regulatory parameter, λ ∈ (0, 1). We keep
the settings from [8] and set λ = 0.05 which leads to a
number of NN iterations, K = 62, for the INN procedure.
For an input query, INNC sums up the coefficients from the

TABLE IV
TRAINING TIMES FOR THE PROJECTIVE METHODS ON GTSC

Features raw LDA SRLP INNLP
I none ∼3s ∼1day ∼2h
PI none ∼11s ∼1day ∼5.5h
HOG1 none ∼6s ∼1day ∼4h
HOG2 none ∼6s ∼1day ∼4h
HOG3 none ∼17s ∼1day ∼11h

INN representation corresponding to each class and assigns
the query to the class with the maximum such sum.

4) Support Vector Machines Classifiers: Support Vector
Machines (SVM) are a very popular technique for out of the
box classification [22], [23]. The kernels k(x,y) we use here
are the Linear - x·y, Intersection Kernel- min(x,y), Polyno-
mial - (x·y+1)5, and Radial Basis Function exp(−‖x−y‖2).
The classifiers are named LSVM, IKSVM, POLYSVM, and
RBFSVM, accordingly.

We train one-vs-all classifiers using LIBSVM [24] (with
parameter C = 10) and LIBLINEAR [25] (with parameters
C = 10, B = 10). As in [15], the test sample is associated
with the class with the highest posterior probability estimated
using the sample’s margin.

VI. CLASSIFICATION EXPERIMENTS

In the subsequent sections we evaluate different com-
binations of various features and feature representations
combined with different classifiers. As will be seen, many
of these combinations provide comparable quantitative re-
sults while greatly differing in training and testing times.
Therefore we first provide a comparison of timings for the
different training and evaluation pipelines.

A. Training time

All provided times are rough estimates based on standard
C/C++ SVM libraries and unoptimized Matlab codes, they
serve as reference. The classification experiments were car-
ried out on a Quad-Core AMD Opteron 8360 SE machine
with 64GBytes of RAM.

Features computation is the first stage of our pipeline.
Other than using the image intensities directly, in this paper
we experiment with different variants of HOG features
(PI, HOGx). We work with cropped and normalized image
patches of 28 × 28 grayscale pixels, and for each of them
the feature computation takes less than 5ms with our Matlab
scripts. The features computation step has to be performed
both for training and testing.

As a second stage we generate different feature projec-
tions. The training times for the projections on the GTSC are
summarized in Table IV. While LDA operates in the range of
a few seconds, INNLP and SRLP are considerably slower in
training the projections, depending on the dimensionality of
the raw features. INNLP is up to 12 times faster than SRLP.

When training the SVM based classifiers, the feature
dimension plays an important role (see Table V). While
training IKSVM, POLYSVM or RBFSVM over thousand
dimensional features (I, PI, HOGx) is very time consuming



TABLE V
PERFORMANCE AND RUNNING TIMES OF DIFFERENT CLASSIFIERS REPORTED ON GTSC (TIMES FOR THE CLASSIFIER ONLY, DISREGARDING

FEATURES COMPUTATION AND PROJECTION).

Feature Projection Classifier Accuracy Training time Testing time

I,PI,HOGs INNLP INNC (K = 62) 98.53% none ∼ 10m
INNC (K = 14) 98.27% none ∼ 3m

SRLP SRC 98.50% none ∼ 9h

PI,HOGs LDA INNC 98.33% none ∼ 3m
SRC 98.30% none ∼ 3h

SRLP RBFSVM 98.32% ∼ 5h ∼ 4m

PI none IKSVM 97.14% ∼ 1day ∼ 4m
SRLP POLYSVM 96.84% ∼ 0.3h ∼ 0.5m

HOG2

INNLP LSVM 96.51% ∼ 1m ∼ 1s
RBFSVM 97.08% ∼ 0.5h ∼ 3m

SRLP

IKSVM 96.81% ∼ 0.5h ∼ 0.5m
INNC (K = 14) 97.57% none ∼ 1m
INNC (K = 62) 97.65% none ∼ 3.5m

SRC 97.53% none ∼ 1.5h
LDA NN 96.97% none ∼ 5s

on large datasets like GTSC, it is orders of magnitude
faster for their lower dimensional projections (LDA, SRLP,
INNLP). Moreover, the embeddings usually lead to better
classification performance when compared with using the
raw features (see Table VI). Training LSVM is fastest,
followed by POLYSVM, IKSVM and finally RBFSVM.
Based on their nature, least squares classifiers do not require
any additional training time.

B. Testing time

Test times decrease when using the lower dimensional
feature projections. In our experiments, the fastest classifier
was LSVM, followed by NN and IKSVM. SRC is not
applicable for real-time applications as its testing time is
10 to 1000 times slower compared to SVM classifiers, due
to the optimization involved. The INNC classifier combined
with INNLP projections provide a reasonable testing speed,
which lies in between LSVM (10 times faster) and SRC (50
times slower).

C. BTSC results

Table VI depicts the performance achieved for different
classifier and raw or projected I and PI features. The LDA
projections are 61-dimensional (number of classes minus
1) while for SRLP and INNLP the dimensionality of the
embedding is set to 50. The regularization parameter is set
to 1 for LDA, 0.1 for SRLP and 0.01 for INNLP.

Operating directly on the image intensities provides poor
results. The best 4 combinations (shown with bold) of
classifier and features are within a range of 0.28 percentage
points. In average the SRLP and INNLP projections over
PI provide the best results. The top scores are reached by
using the SRC classifier, but INNC and even LSVM are very
close. Generally we found that the used classifier does not
impact the quality drastically while using these features (<

1 percentage point). The decision of which combination to
use is left for the reader and depends on the requirements of
fast training (e.g. LDA PI + INNC) or fast evaluation (e.g.
SRLP PI + LSVM).

D. GTSC results

Table VII reports the classification results achieved for
different settings. The LDA projections are 42-dimensional
(number of classes minus 1) while for SRLP and INNLP
we fix the dimensionality of the embedding at 100. The
regularization parameter is set to 1 for LDA, 0.1 for SRLP,
and 0.01 for INNLP. Besides I and PI features, this datasets
provides the precalculated HOGx features. In all experiments
HOG2 produces better results than HOG1 and HOG3 which
are therefore omitted in the table. With an average classi-
fication rate of only 91.49% (across classification methods)
we further removed projected I features from the table to
increase readability.

We do not evaluate raw features, since (based on table
VI) we do not expect good results and the training on a large
dataset such as GTSC would be computationally demanding.

Similar to the result in the previous section, the best 4
results are in a range of 0.14 percent points and the SRLP
and INNLP projections provide better results than LDA.
The provided HOG2 features perform better than the other
features.

E. The best classification results

Merging the features usually helps improving the clas-
sification rates. In Table VIII we report the performance
obtained by merging features projected via LDA, SRLP, and
INNLP, tested over GTSC. All these results are better than
any individual based result, using a single projected raw
feature.



TABLE VI
CLASSIFICATION RATE (%) RESULTS ON BTSC

I PI LDA I LDA PI SRLP I SRLP PI INNLP I INNLP PI Avg.
NN 77.15 88.52 92.46 97.47 93.06 97.20 93.61 97.08 92.07
SRC 91.00 95.42 94.67 97.34 95.15 97.55 94.80 97.83 95.60
INNC 86.15 94.79 94.71 97.67 95.15 97.47 94.83 97.55 94.79
LSVM 90.69 96.68 91.48 96.73 91.83 97.32 91.87 97.24 94.23
IKSVM 91.36 97.79 92.22 96.80 91.83 97.08 92.86 97.08 94.63
POLYSVM 89.94 96.61 91.79 96.45 92.85 97.00 93.13 96.96 94.34
RBFSVM 90.41 96.57 91.79 97.08 92.90 97.43 93.37 97.26 94.60
Avg. 88.10 95.20 92.87 96.64 93.25 97.29 93.50 97.29

TABLE VII
CLASSIFICATION RATE (%) RESULTS ON GTSC

LDA PI LDA HOG2 SRLP PI SRLP HOG2 INNLP PI INNLP HOG2 Avg.
NN 95.83 96.97 95.26 96.56 93.28 96.47 94.05
SRC 96.33 97.20 96.69 97.51 96.70 97.53 95.87
INNC 96.52 97.47 96.54 97.57 95.15 97.65 95.86
LSVM 95.16 96.42 96.03 96.37 96.15 96.51 93.31
IKSVM 95.08 96.22 96.40 96.81 96.43 96.73 93.91
POLYSVM 95.36 96.58 96.84 96.93 96.68 96.84 95.22
RBFSVM 95.34 96.65 96.82 96.95 96.85 97.08 95.30
Avg. 95.66 96.79 96.37 96.96 95.89 96.97

TABLE VIII
CLASSIFICATION RATE (%) RESULTS ON MERGED I,PI,HOG1,2,3

PROJECTIONS OVER GTSC

Classifier LDA SRLP INNLP
NN 97.65 97.57 97.60
SRC 98.28 98.50 98.31
INNC 98.20 98.25 98.53
LSVM 97.82 97.47 97.25
IKSVM 97.78 98.15 98.13
POLYSVM 97.91 98.16 98.02
RBFSVM 97.94 98.16 98.05

TABLE IX
BEST CLASSIFICATION RESULTS ON GTSC

CR (%) Team Method
99.46 IDSIA [26] Committee of CNNs
98.84 INI-RTCV [4] Human Performance
98.53 ours INNC+INNLP(I,PI,HOGs)
98.50 ours SRC+SRLP(I,PI,HOGs)
98.31 sermanet [27] Multi-scale CNNs
98.19 [28] SRGE+HOG2
96.14 CAOR [4] Random Forests
95.68 INI-RTCV [4] LDA on HOG2

The same effect is found on BTSC. Concatenating LDA
projections of I and of PI features boosts the performance
up to 97.78% for NN and 98.20% for INNC. With SRLP
projected features, INNC peaks at 98.32%.

Table IX gives an overview of the best classification rates
reported so far on GTSC. With INNC and INNLP projections
we get 98.53%. Our second best setup, uses SRC and is 50

times slower (see Table V). The committee of Convolutional
Neural Networks (CNN) [26] gets 99.46%, significantly
better than the human performance 98.84% and is therefore
around 1 percentage point better than our proposed method.
However, this quality improvement comes to the price of
37 hours of training on dedicated hardware (using 4 GPUs),
while our INNLP+INNC method needs less time, as only
the feature projections have to be calculated. At test time
our method is also more lightweight.

Please note that we improve over the results of a multi-
scale convolutional neural network [27] or other reported
methods on this dataset such as Sparse Representation-based
Graph Embedding (SRGE) [28] which extends the SRLP
technique to include also the discriminative information
between different classes – 98.19%. Our top results come
close to the human performance, and our methods improve
in training and/or testing time over the other top approaches.

VII. RECOGNITION EXPERIMENTS

In applications detection and classification are expected to
run jointly. The detected signs are fed into a classifier. The
previous classification experiments assumed perfectly aligned
detections. Now we evaluate the full pipeline, where errors
in detection affects classification.

As shown in the detection section IV, and in Figure 3, our
detectors are quite accurate and reach 90% recall even with
an overlap criterion of 80%. We validate the classification
performance on the detections spotted on BTSC dataset
(this time used for detection), from our baseline detectors



ChnFtrs and VJ+HSI. For each detector we fix the op-
erating point by setting the score threshold to 0. This gives
an aggregated detection rate (across all three superclasses)
of 95.06% for ChnFtrs and 89.77% for VJ+HSI. For
each detection we extract PI features, compute the LDA
projection, and apply the classifiers.

On BTSC there are 7 classes for the mandatory super-
class, 11 for the prohibitive and 19 for the danger super-class
(covering 37 classes in total). We use classifiers trained on
BTSC with all 62 classes.

The best performing classifier is INNC which provides -
averaged over all classes - 95.73% correct classification rates
when combined with the output of ChnFtrs detectors and
96.10% with VJ+HSI.

These rates are obtained by using the bounding boxes com-
ing from the detector directly where the predicted bounding
box might not be perfectly aligned with the traffic signs.
They lie only 2 percentage points below the classification
experiments when using the precise testing annotations from
BTSC (Table VI).

The traffic sign recognition rate of the ChnFtrs and
INNC + LDA PI system is 91.00% combining the detection
rates of 95.06% and the subsequent classification rate of
95.73%. This means that out of 1945 groundtruth traffic
signs, 1849 are detected, and 1770 are both detected and
correctly labeled (and 175 are misslabeled as background or
wrong class). For comparison VJ+HSI with LDA PI + INNC
achieve only 86.27% recognition rate.

Please note that these results are obtained on a single
frame. When fusing detections over multiple frames, the
success rate will further increase.

VIII. CONCLUSION

In the past traffic sign recognition has raised the develop-
ment of methods that exploit the specific shapes and colors
of traffic signs. We have shown that on the most recent
large datasets for detection and classification, out of the box
methods reach top performance.

Most certainly adding traffic sign specific information,
and temporal information would allow to further improve
quality. However, we already notice that existing datasets
reach saturation (most results are in the range 95% ∼ 99%
of the perfect solution). We believe it is thus time to move
towards even larger datasets, and to include subsets recorded
under adverse weather conditions (rain, fog, night, snow).
Although such a dataset does not yet exist publicly, we hope
its creation will further push forward the topic of traffic sign
recognition.
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