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Abstract

Detecting partially occluded pedestrians is challenging.
A common practice to maximize detection quality is to train
a set of occlusion-specific classifiers, each for a certain
amount and type of occlusion. Since training classifiers is
expensive, only a handful are typically trained. We show
that by using many occlusion-specific classifiers, we outper-
form previous approaches on three pedestrian datasets; IN-
RIA, ETH, and Caltech USA. We present a new approach to
train such classifiers. By reusing computations among dif-
ferent training stages, 16 occlusion-specific classifiers can
be trained at only one tenth the cost of one full training. We
show that also test time cost grows sub-linearly.

1. Introduction

The reliable detection of pedestrians is important for ap-
plications like surveillance, autonomous robotic navigation,
or automotive safety. While the detection quality has con-
stantly improved over recent years, state-of-the-art methods
struggle to detect pedestrians that are far away (small in the
image), in unusual poses, or occluded [11]. Occlusion1 is
legion. In street scenes about 70% of all pedestrians appear
occluded in at least one frame [7]. Yet, the best performing
pedestrian detectors do not handle occlusions explicitly.

A common practice to maximize the detection of oc-
cluded objects is to train a set of occlusion-specific clas-
sifiers, one classifier for each type (e.g. occlusion from the
left) and for each level of occlusion. Since training is costly,
only a limited number (3~5) of such classifiers tend to be
trained. As the datasets and number of object classes grow,
the need for efficient training is rising.

We introduce the idea of spatially biasing feature se-
lection during the training of boosted classifiers. Starting
from one biased classifier trained for full-body detection,
we reuse training time operations to efficiently build a set
of occlusion specific classifiers. The gain in computation

1Here, we do not distinguish between truncations and occlusions.

(a) Training many occlusion specific classifiers is costly
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(b) Result of our combined occlusion-specific classifiers

Figure 1: Motivation: to handle frequently occurring occlu-
sions, we train many occlusion specific classifiers.

time (one order of magnitude) enables to train classifiers
for all amounts of occlusions exhaustively, at a fraction of
the cost for training a standard detector. Our occlusion clas-
sifiers reach 97% of the performance of a brute-force ap-
proach, while requiring only 8% of the training time. At
test time, feature sharing among the occlusion-specific clas-
sifiers yields a sub-linear growth in cost. Using our exhaus-
tive set of classifiers provides better performance than using
only a sparse set of individually trained occlusion-specific
classifiers. We report top performance on the INRIA, ETH
and Caltech pedestrian datasets.
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1.1. Related work

Object and pedestrian detection in particular have re-
ceived significant attention over the last years. Despite this,
relatively few authors have addressed the issue of occlusion
handling. Overall, two common approaches exist:

Training multiple classifiers Statistics on pedestrian oc-
clusion show that a few occlusion types (from the bottom,
right, and left) cover more than 95% of cases [7]. Thus,
it has been proposed to train a small set of classifiers, each
one for a specific occlusion [19]. At test time, occlusions
are detected (e.g. using a depth map), and their appropriate
classifiers are used. This provides the best detection quality
for each case, but costs more training. Therefore, in practice
only a few detectors are trained. We address this issue.

Occlusion as latent variable An arguably more princi-
pled approach is to model occlusion as a latent variable, to
be estimated at test time.
In [3] structured regression is used to estimate object bound-
ing boxes at test time, thus handling some occlusions. This
model however does not exploit spatial information (bag-
of-words models), hence is not competitive.
Another approach is to divide template models into blocks
or parts and infer visibility of each block at test time. Oc-
clusion inference is done using depth information [8] or by
optimizing the observation likelihood [20, 17, 15, 9, 10].
When marking blocks as occluded these models loose dis-
criminative power since less information is extracted, the
usable part of the feature vector shrinks. In contrast, when
training a classifier for each occlusion type and level the
feature extraction focuses on the visible area, thus enabling
improved detection. We expect that, independent of object
class, a detector trained for a specific occlusion will surpass
“cutting down” a detector that assumes full visibility (see
figure 2a).

More recently it was proposed to train specific detectors
for pairs of occluding and occluded objects [13]. Although
this approach provides good results for pairs of pedestri-
ans, it is unclear how it would scale up for different pairs of
classes. These approaches already count training and test-
ing cost in days and hours, while we are in the range of
hours and minutes. In this paper we target the general case
where the occluded object is independent of the occluding
one (wall, image border, etc.).

Hoiem et al. [11] underlined the importance of handling
occlusions and the difficulty of properly evaluating it. We
work around the evaluation issues in sections 5 and 6.

1.2. Contributions

Our contributions are:

1. We present, for the first time, experiments quantify-
ing the performance of the Integral Channel Features
detector (ChnFtrs) [6] in the presence of various

amounts of occlusion (§5).

2. We propose an effective method to train an exhaus-
tive set of occlusion-specific detectors, at a fraction
(∼ 10%) of the cost of a brute-force approach that
would train each classifier from scratch (§4.3).

3. We show that at test time, when using the trained set
of occlusion-specific detectors, the computation cost
grows only sub-linearly (∼ 20% of the brute-force ap-
proach in our setup) (§6.2).

4. When using our exhaustive set of occlusion-specific
detectors (named “Franken-classifiers”), we improve
the state of the art of pedestrian detection on three chal-
lenging datasets (§6).

To the best of our knowledge this is the first work addressing
the issue of computation cost of training many occlusion-
specific classifiers. In this work we focus on handling oc-
clusions from the bottom, left and right. However, the ap-
proach is generic and could be used for any type of occlu-
sions (such as “bottom-left corner”, or “occluded torso”).

First we briefly describe the ChnFtrs detector (section
2), and its poor performance under occlusion (section 3).
We then improve it by adding a spatial bias (section 4.1). In
sections 4.2 and 4.3 we leverage this idea to efficiently build
a set of occlusion-specific classifiers. We evaluate the pro-
posed methods, both when assuming that occlusion bound-
aries are known (section 5), and when they are unknown
(section 6). We conclude in section 7.

2. Integral channel features classifier
As a base classifier we use our implementation of the In-

tegral Channel Features (ChnFtrs) detector [6], similar in
spirit to the work of Viola and Jones [16] (building upon the
open source implementation of [1]). In recent publications
this approach was shown to provide state-of-the-art quality
[7, 2], speed [1], and a significant improvement over the tra-
ditional HOG+linear SVM detector [4]. The key difference
is that ChnFtrs selects the distribution of image features
to maximize discriminative power, instead of using a hand-
designed grid like HOG+SVM.

The ChnFtrs detector is based on discrete Adaboost,
using depth-2 decision trees as weak classifiers. The nodes
of the trees are decision stumps, defined by a rectangular re-
gion in one of 10 image channels (6 quantized orientations,
1 gradient magnitude and 3 LUV color channels) together
with a threshold over the sum of values over the region.

At each iteration of the training procedure a weak clas-
sifier must be built. The trees are built in a greedy fashion,
learning one node at a time. For each node in the weak
classifier, a set of candidate nodes is built using a prede-
fined set of regions and exhaustively searching the optimal



(a) Each classifier is composed of a set of weak
classifiers (dashed boxes), each weak classifier
reads three regions of the image. When cutting
a classifier, we eliminate all weak classifiers that
read pixels in the occluded area
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(c) Comparison of the number of features remain-
ing for the occluded classifiers

Figure 2: Simply “cutting” a full-body detector results in a significant quality drop, due to a exponential loss in the number
of weak classifiers.

threshold values. The node that results in the smallest clas-
sification error is selected (algorithm 1 in the supplementary
material). The errors are estimated using weighted samples,
as traditionally done in Adaboost. For more details on this
procedure, consult [6]. All our models are composed of
2 000 weak classifiers and are trained using two bootstrap-
ping stages. All parameters are given in appendix A.

3. Classifiers for different occlusion levels
In this paper we consider the most frequent types of

pedestrian occlusions: occlusions from the bottom and
right/left. For each type we build a set of occlusion-specific
classifiers in the range of 0% to 50% occlusion2, see fig-
ure 1a. For our model of 16 × 32 pixels this corresponds
to a maximum number of 8 right/left and 16 bottom-up
occlusion-specific classifiers (+1 full-body classifier).

In the following sections we focus on bottom occlusions,
but all conclusions are equally valid for right/left occlu-
sions, as shown in the results of section 5.

3.1. Naive approach

The simplest approach to construct a set of occlusion-
specific classifiers is to train one full-body classifier, and
then “cut it” for each occlusion level: removing all weak
classifiers with nodes whose rectangular regions overlap the
occluded area (see figure 2a). The cuts are performed in-
stantaneously and therefore do not add to the total training
time.

In figure 2b we show the detection quality for each
of these “naive” classifiers (see section 5 for evaluation
method). It can be observed that quality drops drastically
as occlusion increases (miss-rate is in log scale). For refer-
ence, we also show the results of HOG+SVM [4].

2In our experiments, past 50% the detection quality becomes very low.

The performance drop can be explained by the number
of weak classifiers left for a given level of occlusion. The
quality of the detector is correlated with the number of weak
classifiers. In figure 2c we present the number of weak clas-
sifiers as a function of the level of occlusion. It can be ob-
served that already at 20% occlusion more than 50% percent
of the weak classifiers have been lost (see corresponding il-
lustration 3a).

Scrutinising the learned models shows that the regions
used by weak classifiers are well distributed across the
model. The exponential drop in weak classifiers indicates
that most span a large part of the object height, i.e. many of
them observe both the head and feet of the pedestrians.

In the next sections we explore alternatives to improve
over the unsatisfactory quality of the naive approach.

3.2. Brute-force approach

The best possible results can be obtained with a brute-
force approach. For each occlusion level a new classifier is
trained from scratch, restricted to only use the visible part.
By construction, each occlusion-specific classifier will have
selected the best weak classifiers for the task. This set puts
an upper bound on the achievable quality (see figure 4).

Given the setup of section 2, training each classifier takes
roughly 1 hour. Training the 17 classifiers (1 full-body + 16
occlusion levels) takes more than 18 hours. When train-
ing for multiple scales [1, 2], multiple classes, or for larger
datasets, training can easily take multiple days. This is the
core problem addressed in this paper.

4. Fast training of occlusion-specific classifiers

We propose a fast training method for occlusion-specific
classifiers. To explain it we proceed in three stages, bi-
ased (§4.1), filled-up (§4.2), and finally, our fastest method,



Naive approach

Number of weak classifiers
0 20001000

O
cc

lu
si

o
n

 l
e
v
e
l

0.0

0.5

0.25

Number of weak classifiers
0 20001000

O
cc

lu
si

o
n

 l
e
v
e
l

0.0

0.5

0.25

(a) Naive approach
Number of weak classifiers

0 20001000
O

cc
lu

si
o
n
 l
e
v
e
l

0.0

0.5

0.25

Biased approach

(b) Biased approach
Number of weak classifiers

0 20001000

O
cc

lu
si

o
n
 l
e
v
e
l

0.0

0.5

0.25

Filled-up classifiers

(c) Filled-up classifiers
Number of weak classifiers

0 20001000

O
cc

lu
si

o
n
 l
e
v
e
l

0.0

0.5

0.25

Franken classifiers

(d) Franken-classifiers

Figure 3: Losses in the number of weak classifiers lead to losses in classification quality. A naive approach degrades rapidly
in the presence of occlusion (figure 3a). We describe three approaches to cope with this problem (sections 4.1, 4.2 and 4.3).

Franken-classifiers (§4.3).
Some may consider training time of secondary impor-

tance. However both industry and research operate with
limited time budgets. It is known that the quality of
a method or implementation improves by “testing many
ideas”. Given a fixed time budget, we believe that being
to “test out” 10 times more ideas is a significant gain.

4.1. Biased Classifier

The quality of the naive approach is too poor and the
brute-force approach too slow to train. To cope with these
issues, we propose to bias the classifier training towards a
distribution of weak classifiers more suitable for generat-
ing (“cutting”) occlusion-specific classifiers. This will re-
sult in the weak classifiers being more concentrated in the
non-occluded areas than when training a non-constrained
classifier (as in section 3.1).

The key insight of this work, is that it is possible to
change the spatial distribution of the regions selected by the
weak classifiers, without a significant quality drop3.

At each iteration, the training algorithm picks the candi-
date node with the lowest error. As the number of possible
nodes is very large and the discriminativity of each node
low, the best ranking nodes typically have a performance
very similar to the best selected node. In the next iteration
Adaboost selects the best node with respect to the previous
weak classifiers, thus selecting a slightly worse weak clas-
sifier in one stage does not necessarily imply that the final
classifier will have worse performance.

To handle bottom occlusions we want to bias our weak
classifiers upwards. A single parameter β is used to trade-
off the weak classifiers position bias versus the quality of
the resulting detector.

In rough term, at each iteration, β defines the set of nodes
considered “top ranking” as the nodes with error inferior to

3Less than 0.2 percent points on mean average miss-rate, well within
the variance of the training method. See related figure in supplementary
material.

(1 + β) · min_error. If a top ranking node is available in
the upper 50%, it is selected, otherwise the uppermost top
ranking node is selected. Given the root node of the decision
tree, the child nodes are selected in a similar manner but us-
ing the root node bottom as boundary instead of 50% of the
model height. For more details please consult the supple-
mentary material. In all our experiments we use β = 0.05.
Our analysis show that β is not very sensitive, values in the
range [0.01, 0.08] provide similar results.

The learned biased classifier will be cut in a similar man-
ner as the naive approach. Adaboost learns a linear combi-
nation of weak classifiers; its learning procedure is sensi-
tive to the ordering of the selected weak classifiers. When
removing weak classifiers based on a geometric criterion,
they will be removed at arbitrary positions in the original
classifier sequence. The previously learnt weights of the
linear combination will then be sub-optimal. To improve
the quality of the remaining strong classifier, we reset the
weights by applying the Adaboost algorithm over the re-
maining weak classifiers sequence.

Figure 2c shows the obtained node distribution for the bi-
ased classifier (versus the naive approach). Where the weak
classifiers are unconstrained, the biased classifier shows the
same exponential behaviour as the naive classifier. Between
0% and 50% occlusion level, the curve has a roughly linear
behaviour (see also illustration 3b). More weak classifiers
lead to better quality.

Costs and benefits Training a biased classifier has es-
sentially the same cost as the normal approach. Training
time is dominated by the construction of the node sets, not
by the node selection itself. Using the bias, many more
weak classifiers remain at each occlusion level (up to 4×
more), this significantly boosts classification accuracy. Cut-
ting, revisiting and resetting the weights of the weak classi-
fiers has a negligible cost in comparison to the overall train-
ing.
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Figure 4: Comparison of the different approaches to handle occlusion. Vertical axis indicates mean recall over 0.1 to 1 false
positives per image, and thus is an indicator of quality.

4.2. Filled-up classifiers

The quality of the ChnFtrs detector depends on the
number of weak classifiers. Although the biased classifier
presented in the previous section presents a significant im-
provement over the naive approach, the number of weak
classifiers still falls as the occlusion level increases. To fur-
ther improve the situation we propose to train a single bi-
ased classifier, “cut it” for each occlusion level, and then
extend each occlusion-specific classifier by training addi-
tional weak classifiers until reaching the same number of
weak classifiers as in the full-body detector. We call these
new classifiers “filled-up”, see figure 3c. Although hav-
ing the same number of weak classifiers does not equate to
reaching an equal quality, we use this measure as a proxy.

Similar to the biased case, after cutting a classifier the
weights of the remaining weak classifiers need to be re-
set. By doing so, we also obtain new weights for the data
samples which are then used to initialize the next boosting
round. After resetting the weights, the classifier is then ex-
tended using standard Adaboost training until we reach the
desired amount of weak classifiers.

Costs and benefits The ChnFtrs classifier training
is done in three stages (see appendix A). For the filled-up
classifiers, only the last training stage is extended (first two
rounds are a fix cost). Creating the set of candidate nodes
dominates the time of this last stage, thus the cost of filling-
up the classifiers is roughly linear to the number of added
weak classifiers.
Starting from the full-body classifier, we need to build 16
additional occlusion-specific classifiers. A brute-force ap-

proach would require training 16 × 2 000 = 32 000 weak
classifiers. Using the filled-up approach, experiments show
that we only need to add about ∼ 10 000 weak classifiers,
i.e. only one third of the brute-force cost. As we will show
in section 5, the filled-up classifiers reach 97% of the qual-
ity of the brute-force approach.

4.3. Franken-classifiers

The filled-up approach boosts quality, but still requires to
train a significant number of weak classifiers. We can fur-
ther decrease the training time by generating the occlusion-
specific classifiers in a recursive way (see figure 3d).

Similar to the filled-up classifiers, we start from the full-
body biased classifier and remove weak classifiers to gener-
ate the first occlusion classifier (least occluded). The ad-
ditional weak classifiers are learned without spatial bias.
Given the full classifier for the first occlusion level, we pro-
ceed to cut it using the second occlusion level. The second
occlusion level is then filled-up. This process is repeated
until the last occlusion level is reached. Because of the re-
cursive training, the classifier for the last (and most drastic)
occlusion level will potentially have weak classifiers orig-
inating from all previous occlusion levels (see figure 3d).
We name this compound classifier the “Franken-classifier”,
paying tribute to Dr. Frankenstein [12] who would have
appreciated the idea of "building a classifier out of many
pieces".

Costs and benefits Compared to the filled-up classi-
fier we further reduce the number of weak classifiers to
be trained. Instead of 16 × 2 000 = 32 000 weak classi-



Type
Number of

Quality
Relative Training time

classifiers training time in minutes

Brute-force 17 100% 100% 1 088
5 classifiers 5 94% 29% 320
3 classifiers 3 89% 18% 192

Franken 1+16 97% 8% 64+28
Filled-up 1+16 97% 11% 64+54
Biased 1+16 93% 6% 64
Naive 1+16 82% 6% 64

Table 1: Comparison between the proposed approaches.

fiers for the brute-force approach, or 10 000 for the filled-
up case; our experiments show that we only need to add
about∼ 6 000 weak classifiers to the last training stage. We
now need less than one fifth of the brute-force training cost.
In our experiments, the Franken-classifiers reach the same
quality as the filled-up classifiers.

5. Independent Franken-classifiers evaluation

In the previous sections we presented different methods
to obtain occlusion classifiers. All descriptions so far have
referred to occlusions in the lower part of the pedestrian.
For occlusions from the right we use exactly the same pro-
cedure and parameters. The occlusion-specific classifiers
from the left are obtained by mirroring the right classifiers.

5.1. Evaluation method

We first evaluate our occlusion-specific classifier inde-
pendently and show their performance for each occlusion
type and level. Evaluating occlusion cases is a delicate mat-
ter [11]. Most pedestrian datasets contain only few anno-
tated occluded pedestrians, for instance, Caltech USA [7]
has only 100 pedestrians in the “partially occluded” range.
To work around this issue, we propose to use the larger set
of non-occluded pedestrians. Each occlusion-specific clas-
sifier is evaluated using a sliding-window over the whole
image. Each test window is classified using only pixels that
are located in the non-occluded area. E.g. the classifier for
pedestrians occluded by 50% from the bottom, only con-
tains features located in the upper part of the test window.
For these evaluations we use the INRIA dataset [4].

With this approach we have more testing data, we evalu-
ate the occlusion-specific detectors in a setup more similar
to their test-time usage (FPPI vs FPPW, see [7, figure 10]),
and the results for each occlusion level are comparable since
all occlusion-specific classifiers are evaluated over the same
pedestrians.

In section 6 we discuss an evaluation that uses all the
occlusion-specific detectors jointly.

5.2. Classifier quality

To compare the different classifiers, we average the miss-
rate in the interval from 0.1 to 1 false positives per image.
Figure 4 summarizes the result of all 764 trained classifiers
over 1245 evaluations on the INRIA test set. Each single
evaluation curve in figure 2b is represented as one step in
figure 4. For a given level of occlusion we use the clos-
est classifier not overlapping with the occlusion. Percent-
ages after the labels indicate the ratio of the area under the
curve compared to the brute-force approach. The method
“3 classifiers” refers to using brute-force classifiers
at 0%, 25% and 50% occlusion.

It can be observed that our proposed methods signifi-
cantly improve over the naive approach, and reach compa-
rable quality to brute-force.

5.3. Training time computational cost

Table 1 relates the quality of the occlusion classifiers to
the measured training time (wall time). As mentioned in
section 2, we use three training stages (two bootstrapping
rounds). The biased approach is applied to all stages, while
filling-up and creating the Franken-classifiers is only done
in the last stage. Due to this, the wall time is not directly
proportional to the weak classifiers count. For the brute-
force approach each classifier is trained independently.

Given our results, the biased classifiers should be pre-
ferred over the naive approach, as the quality for all occlu-
sion levels is much better, while the training time remains
the same. The Franken-classifiers provide even higher qual-
ity with very low training time. Training 3 or 5 brute-force
classifiers takes more time than the proposed approaches,
while still having lower quality.

5.4. Test time computational cost

The individual Franken-classifiers can be used in a
straight forward fashion on the image borders to detect trun-
cated pedestrians. When searching pedestrians over an im-
age with 640 × 480 pixels over 55 scales (0.4× to 5×),
around 5 million candidate detection windows will be eval-
uated. Handling up to 50% occlusions on the left, right
and bottom borders generates only 9% additional candidate
windows. Importantly, using 17 models or 3 models, cor-
responds to exactly the same amount of window evalua-
tions, and thus to the exact same evaluation cost (assuming
all models have the same number of weak classifiers). In
this setting, the number of models affects the quality and
the memory usage, but not the test time. The same applies

4Trainings for bottom occlusions: 17 (brute-force) + 1 (biased) + 32
(filled-up and Franken-classifiers); respectively, from the right: 9 + 1 + 16

5Evaluations for occlusions from the bottom: 16×5 (brute-force, filled-
up, Franken, biased, and naive) + 1 (shared evaluation for brute-force and
naive) + 1 (shared for biased, filled-up and Franken ); and respectively,
occlusions from the right: (8× 5) + 1 + 1



for any scenario in which occlusions (of unknown objects)
can be detected, e.g. using depth sensors, optical flow, or
tracking information.

6. Joint Franken-classifiers evaluation
In the previous section we evaluated our Franken-

classifiers in the scenario where occlusions are known, but
the presence of a pedestrian on such occlusion boundaries
is unknown. In this section we consider detecting pedestri-
ans without knowing a priori where the occlusions occur. To
do so, we evaluate all our Franken-classifiers everywhere on
the image, and then merge the detections. As full-body clas-
sifier we use the biased classifier for the bottom occlusion.
The classifier scores are roughly calibrated by normalizing
the maximum achievable detection score.

As a proof of concept we propose merging the different
classifier results by non-maximum suppression over bound-
ing boxes. This approach is surely suboptimal, using a more
sophisticated approach such as [18] would further increase
the detection results.

Merging detections Our merging approach is based on
two principles: “detectors with higher occlusion levels have
worse quality”, and “the Franken-classifiers should comple-
ment the full-body detections”. To account for the first prin-
ciple, we reweight the detections by the cube of 1 - occlu-
sion level. To account for the second principle we do non-
maxima suppression in two stages. Since occlusion detec-
tors will trigger on fully visible pedestrians, for each zero
occlusion detection we remove all overlapping detections,
and increase its score by adding up the score of the overlap-
ping bounding boxes. In a second stage we do non-maxima
suppression between all occluded detections, and join the
two sets to obtain our final detection bounding boxes.

6.1. Detection quality

In this section we use as base classifier the
SquaresChnFtrs [2]. It is identical to ChnFtrs,
but instead of a random set of rectangles it uses all possible
squares as feature pool. Additionally, to reflect the lower
confidence in detection of smaller scale pedestrians, we
linearly penalise the score of detections smaller than the
dataset’s median bounding box height. All images are
pre-processed as in [2].

We run the evaluations using the toolbox provided in [7].
To reduce visual clutter we have included only top perform-
ing methods. In figure 5 we show the joint detection perfor-
mance of our 33 Franken-classifiers and use as comparison
baseline the unbiased SquaresChnFtrs classifier.

Using the Franken-classifiers the detection quality im-
proves on all dataset, reaching top quality (for single scale
models that do not consider context or multiple frames). On
Caltech we reach the best reported results for partial and

heavily occluded pedestrians. In the supplementary mate-
rial we include the additional Caltech occlusion ranges, and
show that 33 classifiers improves over using only 7.

Figure 1b shows one example of our joint detection on
the ETH dataset.

6.2. Test time computational cost

Using the same setup as this paper, the maximal reported
detection speed for a single detector is 50 Hz [1, 5]. Run-
ning all 8× 2+ 16+ 1 = 33 independently would increase
the testing time by a factor of 33×.

Similar to how we can train many occlusion models in
a fraction of the time of a full model, we can also evalu-
ate our 33 classifiers much faster than independently. By
design our training procedure generate models that share
many features (figure 3d). These shared features need to be
calculated only once per candidate detection window. In our
joint experiment, the total amount of unique weak classifiers
to evaluate sums up to ∼ 14 000, this is significantly less
than 2 000 × 33 = 66 000. Exploiting the shared features,
enables a∼ 5× speed-up with respect to a naive brute force
evaluation. Sharing features between models to reduce test
time was previously explored in work such as [14]. There
the sharing needs to be added into the training procedure,
while our Franken-classifiers share features by design.

Given our training procedure, all models in each occlu-
sion type share at least ~1000 features (number of remain-
ing features at 50% occlusion level, figure 2c). When using
a soft cascade over ChnFtrs [5, 1], in average as few as
∼ 20 weak learners are evaluated per detection window.
After sorting the common features upfront, each occlusion
type shares the same initial ∼ 1000 features, which enables
the soft cascade to directly drop sets of classifiers; further
speeding up the evaluation with respect to the brute force
case (soft cascades usually bring a 10× speedup).

We estimate that a speed aware implementation, using
the methods of [1] and [5] should reach comfortably 5 Hz
or more. Such implementation is left for future work.

7. Conclusion
To the best of our knowledge this is the first work that in-

vestigates the behaviour of the ChnFtrs detector under oc-
clusion. We have shown that a naive approach to handle oc-
clusions provides poor quality, and that occlusion-specific
classifiers can perform significantly better.

We proposed a new approach that results in sub-linear
cost for both training and testing occlusion-specific classi-
fiers. A proof of concept usage of the Franken-classifiers
shows that we can reach top quality detection on challeng-
ing pedestrian datasets. We expect more sophisticated fu-
sion methods will further improve results.

Acknowledgements: Work partially supported by the
Toyota Motor Corporation, and the IWT project PARIS.
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Figure 5: Improved detection quality when using occlusion-specific classifiers.
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A. Training parameters
Unless otherwise specified we use the parameters that

provided the best classification results in the original paper
[6]. The nodes are constructed using a pool of 30 000 candi-
date regions. The full classifier consists of 2 000 weak clas-
sifiers. We train in 3 stages; the first stage randomly samples
5 000 negative samples, the second and third stage use boot-
strapping to add 5 000 additional hard negatives each. To be
faster and memory efficient we shrink the feature channels
by a factor 4 (see [6, addendum]). The model window is of
size 64×128 pixels, after shrinking it has size 16×32 pixels.
Training time is measured on a desktop machine with an In-
tel Core i7 870 CPU and a Nvidia GeForce GTX 590 GPU.
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Abstract

In this supplementary material we give a detailed description of the biasing algorithm and show its impact on the classifier
quality. We also show additional results of our Franken-classifiers.

1. Biased Classifier
1.1. Quality

The main paper argues that it is possible to change the spatial distribution of the regions selected by the weak classifiers,
without a significant quality drop. The comparison between the biased and the unbiased classifier is shown in figure 1. Since
each training run involves a random features pool (set of rectangles used to construct the weak classifiers), we show average
and max-min range for 10 training runs.

At each iteration, the training algorithm picks the candidate node with the lowest error. As the number of possible nodes
is very large and the discriminativity of each node low, the best ranking nodes typically have a performance very similar
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Figure 1: Our ChnFtrs implementation and biased detector versus others [1]. Vertical bars show min/max miss-rates of 10
classifiers trained with different random seeds.
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to the best selected node. In the next iteration Adaboost selects the best node with respect to the previous weak classifiers,
thus selecting a slightly worse weak classifier in one stage does not necessarily imply that the final classifier will have worse
performance.

Having multiple choices for each node, enables biasing the weak classifiers without dropping quality.

1.2. Detailed algorithm

To handle bottom occlusions we want to bias our weak classifiers. We use bottom occlusion (upwards bias) as example.
A single parameter β trades-off the weak classifier’s position bias versus the quality of the resulting detector. In all our
experiments we use β = 0.05, values in the range [0.01, 0.08] provide similar results.

Algorithm 1: GETBESTNODE(nodes, errors)
Algorithm to select the best node.

Input: All nodes and their corresponding errors.
Output: The node with minimal error.

1 begin
2 minErrorIndex← argmin(errors)
3 return nodes[minErrorIndex]

The method to select nodes for the biased classifier is described in algorithm 2. Rather than simply selecting the node with
lowest error (as in algorithm 1), we now select the best node based on multiple criteria:

1. The best node is within a set of high ranking nodes, all with an error smaller than errorThreshold (controlled by β).
See algorithm 2, line 5.

2. Among the high ranking nodes, we select the node with the lowest error situated in the upper half of the model window
(line 13) or, if no such node exists,

3. we select the uppermost one (lines 9-12).

4. After selecting the root node, the child nodes only need to be constrained to be situated higher than the root or in the
upper half (line 13).

The first criterion determines how much the weak classifiers are biased. When β = ∞, algorithm 2 is forced to train an
upper half body pedestrian detector only. When β = 0 algorithm 2 is equivalent to algorithm 1. The third criterion ensures
that nodes situated higher in the training window are preferred, even if the error is slightly higher. Finally, if a root node is
already selected, there is no need to push the leave nodes higher up than the root. Since we are interested in occlusion up to
50%, we do not constrain the positioning of features within the upper half of the model window (criterion 2).



Algorithm 2: GETBESTBIASEDNODE(nodes, error, β)

Input: All nodes and their corresponding errors, both jointly sorted ascending by the values in errors. Biasing
parameter β.

Output: The best node to construct biased weak classifiers.
1 begin
2 rootMaxY ← maximal y position of root node, 0 when searching a root node
3 modelHeight← the height of the training model window
4 bestNodeIndex← 0
5 errorThreshold← min (errors) · (1 + β)
6 minY ←∞
7 for nodeIndex ∈ range (0, size (nodes)) do
8 if errors[nodeIndex] < min (errorThreshold, 0.5) then
9 y ← maximum y position of nodes [nodeIndex]

10 if y < minY then
11 minY ← y
12 bestNodeIndex← nodeIndex
13 if minY ≤ max ((modelHeight/2), rootMaxY ) then break

14 else
15 break

16 return nodes[bestNodeIndex]



2. Joint Franken-classifiers evaluation results
We complement figure 5 of the main paper, with figure 2 of this supplementary material. We show the results of our

method Franken 33 over our strong baseline SquaresChnFtrs. We also include for reference the result when using
only 7 Franken-classifiers (Franken 7), corresponding to 0%, 25%, and 50% occlusion for bottom, left and right occlusion
cases.

As pointed out in the main text the proposed setup to use all classifiers jointly is a proof of concept. When evaluating
more classifiers (everywhere on the image) the chances for false positives are increased. By using our proposed non-maxima
suppression we observe in figure 2 that 33 Franken-classifiers do improve over only 7 or none, on INRIA and ETH. On
Caltech the average miss-rate on the range 0 to 1 false positive per image show little difference. Notice however that on the
high recall area (past 1 false positive per image) the proposed Franken 33 shows visible improvement, reaching the best
reported recall at cross point 10 FPPI.

It should be noted that the Caltech reasonable subset considers 911 ground truth windows (figure 2c), while partial oc-
cluded only 102 (figure 2d) and heavy occluded 273 (figure 2e). On the other hand ETH reasonable considers 12k ground
truth annotations (from consecutive frames in three video sequences), and INRIA 589.

The competitive method MultiresC [2] corresponds to a multi-scales deformable parts model trained on Caltech, it
additionally uses geometric information thus cannot be used on ETH or INRIA. In comparison we use a single scale rigid
model without any geometric prior.

2.1. Example detections

When using Franken-classifiers, we improve our detector by re-weighting the full-body detections and by adding new
detections coming from the occlusion-specific detectors. Figure 3 shows example frames from the INRIA, ETH and Caltech
datasets.

Bottom, left, and right occlusions are coloured black, green, and red respectively. Full-body pedestrian detections are
coloured white. Note that the colour is only related to the highest scoring bounding box at that position, a full pedestrian
might also have been detected by all occlusion-specific detectors (of different occlusion level and type).
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(d) Caltech USA partially occluded subset
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Figure 2: Improved detection quality when using occlusion-specific classifiers.



(a) Occlusions from bottom (black bounding boxes)

(b) Occlusions from left or right (green and red bounding boxes respectively)

Figure 3: Example of pedestrian detections using our 33 Franken-classifiers. Full-body detections are in white, occlusion-
specific detectors in black, green and red.


