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Abstract Applications using pedestrian detection in street scene re-
quire both high speed and quality. Maximal speed is reached when ex-
ploiting the geometric information provided by stereo cameras. Yet, ex-
tracting useful information at speeds higher than 100 Hz is a non-trivial
task. We propose a method to estimate the ground-obstacles bound-
ary (and its distance), without computing a depth map. By properly
parametrizing the search space in the image plane we improve the al-
gorithmic performance, and reach speeds of 200 Hz on a desktop CPU.
When connected with a state of the art GPU objects detector, we reach
high quality detections at the record speed of 165 Hz.
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Figure 1: Fast pedestrian detection pipeline (based on [I]). This paper focuses on
speeding up the stixel world estimation (step 1) via algorithmic improvements.

1 Introduction

Fast object detection is of utmost importance in ground mobile robots. The
faster the objects are detected and categorized, the faster the robot will react to
them, enabling high speed displacement and/or smooth natural motion. False
positive detections should be minimized, to avoid unnatural motions; false neg-
ative detections should be minimized for safety reasons. On the other hand, the
computational budget is restricted due to constrains on power consumption and
the need to execute other modules on the same platform.
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This tension between speed and quality has motivated a significant amount
of research. Recently a new approach for fast pedestrian detection has been pro-
posed [I]. The authors proposed a method for high quality detections at 50 Hz
in the monocular case (using GPU), and proposed to exploit the geometrical
information to reach 135 Hz in the stereo case (using GPU + CPU). To reach
such high speed in the stereo case, Benenson et al. proposed to skip the usual
depth map computations stage, and instead use a direct method to estimate the
presence of objects above the ground [2] (“stixel world” estimation [3]). Com-
bining such fast detection method with fast stereo image processing, allows to
detect pedestrians in less that 10 milliseconds per image.

In [I] the authors report than the current method is CPU-bound; although
GPU detection runs at ~ 150 Hz, the stereo processing only reaches 135 Hz, be-
coming the limiting factor. In this paper we revisit the stereo processing method,
and show that with a proper re-parametrization, it is possible to reach 200 Hz
for the stixel world estimation. This new method enables reaching high quality
detections at 165 Hz, and frees CPU resources for additional tasks (e.g. tracking,
planning).

1.1 Related work

The idea of exploiting stereo information to speed-up objects detection has been
around since more than fifteen years [4] . Multiple methods for coupling depth
maps and objects detection have been proposed [BI6J7/8IOITOITT]. Similarly, free
space estimation allows to disregard areas of the image where we know obstacles
are not present [12/13].

The vast majority of methods previously proposed compute as a first step
a dense (or semi-dense) depth map of the scene, and then use this depth map
to infer the presence of objects. When doing this, the depth map computation
becomes the speed bottleneck, since it needs to compute much more information
than needed (“distance of every pixel in the image” versus “where are the ob-
jects?”). Badino et al. introduced the notion of “stixel world”, which can be seen
as the minimal world model useful to describe the objects, it simply includes a
ground plane and objects that “stick out” from the ground [312].

Kubota et al. [14] showed that depth maps could be skipped, and the distance
to objects could be directly estimated. Benenson et al. [2] then extended this
work by showing that height estimation could also be done without depth map
computation, and that the stixel world estimated by such an approach is suitable
for objects detection [I/I5] and for object motion estimation [16].

1.2 Contribution

Although direct stixel world estimation [2] provides a significant speed-up (from
~ 20 Hz to ~ 100 Hz), when coupled with state of the art GPU objects detector,
it lags behind becoming the speed bottleneck [I]. This is the problem we address
in this paper, our key contribution is proposing a new parametrization for
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direct stixel world computation (without depth map) which allows to reach ~
200 Hz on CPU without compromising on the detection quality.

All together we reach high quality detections at 165 Hz (CPU+GPU), with
the GPU becoming the bottleneck, and freeing CPU resources for other tasks.

In section ] we describe our stixel world estimation method. Section [ ex-
plains how the stixels are used to accelerate and improve objects detection. Sec-
tion [4] provides empirical evidence of the improved quality versus speed trade-off,
both for stixels computation per se and when coupled with objects detection.
We conclude and sketch future work in section [l

2 Fast stixel estimation

The stixel world model can be decomposed in three sets of parameters: the
ground plane, the distance to the objects and the objects height.

For objects detection we assume the object height is known and class depen-
dent, thus we focus on ground plane and distance to objects estimation.

Similar to previous work [T4IT3l2] we first estimate the ground plane (using
evidence collected in v-disparity domainED (see section , and then we use the
ground plane to estimate the distance to the objects (“stixels distance”). The key
difference of our proposal, is that the distance estimation is formulated directly
in the u-v domain, instead of u-disparity as previously done (see section .

Assumptions We share the same assumptions than [I4)2]. The key assumption
is that the camera has negligible roll with respect to the ground plane (pitch
and height are estimated). In the current implementation we use a flat ground
plane model, but nothing impedes using non-linear models. The object height is
assumed known, but the method is robust to fluctuations on the height. Being
stereo matching based, the common Lambertian surface assumption is used.

2.1 Ground plane estimation

We use the same approach as [2]. The ground plane is estimated using the v-
disparity method [6], but the evidence is collected directly from matching left and
right image rows at different disparities (instead of computing and projecting a
depth map). See figure

Given the evidence collected in each row, we extract the disparity with min-
imal cost per row and then use robust line fitting to find the ground plane. The
ground plane model is represented by a function fyrouna : V — D that maps
every image row v to a specific disparity d = fgrouna(v).

In order to speed-up computation, instead of collecting evidence for every row
below the horizon; we consider computing only one-out-of-N row. This provides
significant speed-up without degrading quality (specially when handling large
images).

! In this text u refers to the image columns, and v to the image rows.
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disparity

Figure 2: The evidence for the ground plane estimation is computed by matching
pixels in the left and right images.

2.2 Stixel distance estimation

Previous methods for stixel distance estimation suggested to collect evidence
column-wise in the image, and then estimate the distance by solving a dynamic
programming problem in the u-disparity domain [I4/13l2]. Although effective,
this approach has three weaknesses:

Wrong quantization When concerned about objects detection, we search to
answer “where in the image can we expect objects of the class of interest?”.
When computing in the u-disparity domain, we create a non-homogeneous
discretization in the image space (linear grows of ground plane distance,
but quadratic grows of disparity distance). The quantization of the objects
bottom (v dimension) will be more fine grained near the horizon, and coarser
at the bottom of the image. For objects detection we rather have a regular
quantization on the vertical axis.

Ignores horizontal gradient When matching left and right images for differ-
ent disparities, the information being used are the image gradients aligned
to the vertical axis (vertical gradient). The horizontal gradient is completely
un-informative for stereo matching. In a sense, the v-disparity cost matrix
(see [2]) contains only half of the information available in the image.

We expect that the ground-object boundary correlates with the horizontal
gradient (i.e. that more often than not, there is a visible boundary at the
object bottom). This information should be exploited.

Computes more than needed Because of the quantization effect discussed
above, not only we have undesired quantizations, but also we are computing
more than needed. When in the disparity domain, we will reach sub-pixel
resolution close to the horizon, causing redundant computations. For objects
detection, we only require to compute enough to have a coarse (and unbiased)
estimate of the object position in the image.

Sampling rows and columns To solve these problems we propose to change
the parametrization from the u-disparity domain into directly the u-v domain.
We are unaware of any previous work that used such parametrization.

In order to exploit the horizontal gradient information, one could weight the
likelihood of a particular boundary candidate by the gradient magnitude at a
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particular pixel. This would force to consider every pixel below the horizon line.
In order to speed-up the evaluation we use an alternative approach. The image
is split vertically in multiple row bands, and inside every band, for every image
column, the pixel with the maximal horizontal gradient is selected (see figure (3)).
By only evaluating evidence at the pixel with maximum gradient we significantly
reduce the required computation. By selecting the maximal gradient we increase
the chances to find the object border accurately. In the possible but unlikely case
that the ground has distracting horizontal stripes the incurred error is bounded
(by the band height).

The row band i is termed b;. The particular row selected inside band b;
at stixel ¢; is termed v (g, b;). Given the ground plane model we can write
d(g;, bi) = foround (v (g5, bi))-

Objects of interest will in general have an image width larger than one col-
umn, thus computing evidence for every column on the image is highly redun-
dant. We allow ourselves to sample evidence each one-out-of-N column, at regular
intervals. Each stixel g; is located at column u (g;) = j - stizel _width.

By selecting different stixel widths and row band heights, we are able to
control the amount of data extracted from the image.

Dynamic programming formulation The goal is to find the optimal row
band for each stixel

bi(q) = argmin » ¢ (g, b(@) + D 54 (v(qas b(ga)), v (g, blae))) (1)

b(q) q Qa>qb

where q,, gp are neighbours (Ja — b| = 1), ¢; is the data term and ss the smooth-
ness term. This problem can efficiently be solved using dynamic programming
[14].

Data term For each stixel column ¢ and row band b, we calculate the evidence
supporting the presence of a stixel in the left image by computing the cost c4(g, b)
(“stixel cost”). The lower the cost the more likely that a stixel is present.

cs(q,0) = co(u(q), d(q,b)) + cq(u(q), d(q,b)) (2)

where ¢,(u,d) (“object cost”), the cost of a vertical object being present,
and cq(u, d) (“ground cost”), the cost of a supporting ground being present. See
figure [3] for an illustration on how these cost are computed. ¢, simply sums the
evidence along the vertical column, using the expected object height, projected
in the image using the distance given by the ground plane estimation. ¢, sums
the evidence along the ground plane. In an efficient implementation, the ground
plane estimate is used to warp the right image such as ¢, can be computed using
sums over columns between the left image and the warped right image. This
warping can be done even with non linear ground plane models. See [2] for more
details on ¢, and ¢, computation.



6 Fast stixel computation for fast pedestrian detection

(a) Object evidence (b) Ground evidence

Figure 3: The object and ground costs are computed by matching pixels in the
left and right images. White dots on the image indicates object-ground boundary
candidates, based on horizontal gradient maxima.

Smoothness term The smoothness term sy enforces to respect the left-right oc-
clusion constraints and promotes ground-object boundaries with few jumps.

o ifd(va)<d(vb)—l

s (v ) — 4 Co(tard(va)) if d (va) ~ d (v5) — 1

s (Va, vb) —w - Co (Ug,d (vg)) if go = qp (3)
0 i (v,) > d (1) — 1

The sign ~ in equation [3] indicates that we will consider the lowest g, where
ss # o0 asif d(v,) = d(vp) — 1. w is a free parameter that promotes boundaries
with few jumps, we use w = 0.5.

2.3 Algorithmic speed-up

Solving the dynamic programming problem of equation [l| has a complexity
0] (Q . B2) where @) is the number of stixels in the image, and B is the num-
ber of row bands considered. The computation cost of the data term cg is di-
rectly proportional to @ - B. The total computational cost of our method is
then O (ko - Q- B*+ky- Q- B+ k.- Q), where k. - Q indicates the operations
required to find the maximal gradient point for each row band. Reducing B
allows to significantly improve the computation time.

In [2] every column of the image and every disparity are considered, typically,
640 columns and 128 disparities. In our implementation, for such case roughly
half of the time is spent computing c,, and half of the time solving the dynamic
programming problem. If we consider stixels of width 2 pixels and 50 row bands,
the total computation is expected to drop by a factor 7 (assuming k, = k; and
ke < kp). In section [4| we show how the quality and the effective speed fluctuate
with different values for @) and B. However, it can be readily seen that significant
speed-ups are achievable with this approach.

It should be noted that, as it is, we only consider objects with their bot-
tom visible in the image. For full object detection this is a desirable property.
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Nothing impedes to use the method considering row bands “out of the image”
(corresponding to larger disparity values), we only need to propagate the values
¢g in the visible area towards the invisible areas.

3 Object detection using stixels

The authors of [I] have kindly provided an early access to their open source
release of the (so called) VeryFast detector. When coupled with stixels estimates
this detector uses the stixels of the previous frame, to guide the detections in
the current frame. Given the expected center position of the object (stixel) in
the image, and its expected scale; the detector will search around a few pixels
up-and-down in the column (e.g. £30 pixels) and a few scales (e.g. +5 scales).

The number of windows evaluated is then be number of columnsxvertical
search range x scales search ranges (e.g. 640x60x10), instead of every column xevery
row xevery scale (e.g. 640 x 480 x 55), which corresponds to a ~ 20x reduction
in the search space. In section ] we show that using the new “fast” u-v stixels
estimation has no impact on quality respect to the original stixels estimation
method used in [1].
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Figure 4: Effect of stixel width and number of row bands on the quality.

4 Evaluation

4.1 Stixels estimation

In comparison to [2] we have introduced a few additional degrees of freedom,
which allow a more fine grained control of the quality versus speed trade-off. In



8 Fast stixel computation for fast pedestrian detection

figures[]and 5] we use the same experimental protocol as in [2]. Given the ground
truth annotations of the pedestrians in the stereo sequence Bahnhof (999 frames,
~ 7400 annotated bounding boxes), we measure the vertical distance between
the estimated stixel bottom (at center column of the annotation) and the bottom
of the annotated bounding box. The plots show the cumulative absolute error
over the sequence (error versus fraction of bounding boxes below such error).

In figure we use a very high number of row bands (close to the number
of rows below the horizon), and vary the stixel width. We see that up to stixel
width of 5 pixels the quality is almost unaffected (since pedestrians are much
larger than 5 pixels), but as the width further increases the quality starts to
drop. It is interesting to note that computing stixels in u-v domain provides a
slight quality improvement with respect to using the u-disparity domain (de-
nominated stixels u-d in figure . This is due to be using the horizontal
gradient evidence directly which provides improved robustness to the noise in
the ground plane estimate, and bypasses disparity quantization effects.

In figure we use a stixel width of 3 pixels and vary the number of row
bands. Moving from 128 bands to 25 bands provides only a very small drop in
quality, yet a significant improvement in speed (see section. Of course, if the
number of bands is too low then quality does drop significantly.

In figure [5al we show the quality impact of using more than one column to
cumulate evidence (i.e. not matching a single pixel per row, but pair of pixels,
or trio of pixels, etc...). Against the intuition, we see that matching more than
one column at a time does not significantly improve quality. This shows that
matching only one column already collects the most relevant data from the
image (and has the minimal computation cost). Matching too many columns
(> 5) creates a blurring effect that degrades the quality.

Recall versus FPPI over Bahnhof dataset,
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Figure 5: Stixel and detection quality results.
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Figure 6: Some example frames from the result video (see supporting material).
Blue lines indicate stixels estimates, boxes mark detected pedestrians.

When using a stixel width of 1 pixels and 128 row bands in our u-v stixels
implementation we reach 45 Hz on a high-end laptop (4 cores of an Intel Core
i7-2630QM @ 2.00GHz). From the experiments above we see that using stixel
width of 3 pixels, 25 row bands and cumulating evidence along 1 column, pro-
vides essentially the same quality as the u-disparity stixels in [2]. Using these
parameters we reach 260 Hz, a 2x improvement over [2].

4.2 Object detection

Stixels estimates can be used to speed-up objects detection. We use the open
source VeryFast detector from [I] in the same setup that they proposed. We only
did minor code optimizations to push further the execution speed by 10%. The
key point of this paper is showing that we can make the detection speed GPU
bounded instead of CPU bounded as in [1] (thus freeing the CPU for additional
tasks).

In figure we show the detection quality obtained using the traditional
HOG+SVM detector [17], using the VeryFast by itself, VeryFast with stixels in
the u-disparity domain (VeryFast + u-d stixels), and the new VeryFast with
stixels in u-v domain (VeryFast + u-v stixels). It can be seen that the quality
is not altered, yet we move from 135 Hz [I] CPU-bound to 165 Hz GPU-bound
(CPU side running at 210 Hz), average over 1000 frames on Bahnhof sequence
using an Intel Core i7 870 CPU and an Nvidia GeForce GTX 470 GPU. In figure
[6] we show some examples of the corresponding stixels and detection quality.

5 Conclusion and future work

In this paper we have proposed a new approach for obstacle detection that fo-
cuses on computing exactly what we need, and nothing more. We argue that this
frugal approach is better than the previous ones because it enables estimating
directly what we want (“where are the objects?”), in the domain we want (“where
in the image are the objects?”), reaching the speeds we want (as fast as possible).

With our new u-v domain stixels, fast pedestrian detections on stereo image
becomes (again) GPU-bound (at 165 Hz). Further speed should then be reached
by improving the GPU detector itself, although our initial attempts indicate that
this seems a difficult feat. In the current setup higher GPU speed seem easier to
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reach by hardware updates than by algorithmic modifications. We believe that
exploring improvements in quality is a more fruitful direction at this time.

We are also interested in exploiting the high detection speed to build larger
systems that employ pedestrian detection as an intermediate step.
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