
  

Pedestrian detection
at 100 frames per second
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● Detection is one module 
amongst many

● Less computational power

● Latency matters

Why 100 fps ?



How can we make
things faster ?



How can we make
things algorithmically faster ?



INRIA dataset

[Dollar et al. 2011]
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INRIA dataset



INRIA dataset

[Viola & Jones 2004]

fastHOG
~10 Hz on GPU

[Prisacariu 2009]

Parts Model
[Felzenszwalb 2008]

ChnFtrs/FPDW
~5 Hz on CPU

[Dollar 2009+2010]
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(~4 Hz on GPU)[ChnFtrs, Dollar et al. 2009]



What slows down fastHOG ?

[Prisacariu and Reid 2009]



How to make 
features computation

faster ?



One template cannot detect at 
multiple scales

✔✔ ✘



Traditionally, features are 
computed many times

~50 scales



Traditionally, features are 
computed many times

~50 scales



Training one model per scale
is too expensive

~50 scales



Can we avoid resizing 
the input image many times ?



Features can be 
approximated across scales

~5 scales ~50 scales

≈

[Dollar et al. 2010]



We transfer test time 
computation to training time

1 model, 
5 image scales

5 models, 
1 image scale

(3x reduction in features computation)



At runtime, we use as many 
models as scales

5 models, 
1 image scale

50 models, 
1 image scale

≈





Detecting without resizing 
provides  quality



Detecting without resizing 
provides speed

 ~3x less time on features computation

 Avoids alternating between features 
and detection scores computation
(relevant in practice)

 We reach 50 Hz on GPU,
640x480 pixels x 55 scales



We want to use scene geometry 
to guide the detections

Monocular Stereo



  

Stixel world

[Badino et al. 2009]



  

Depth maps are slow to compute

<50 Hz on CPU



  

Stixel world without depth map

[Benenson et al. 2011]

135 Hz on CPU



Stixel world without depth map

Left Right
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Stixel world without depth map
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Stixel world without depth map
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Stixel world without depth map

Left Right

u

disparity

2) Stixel distance estimation @ 135 Hz CPU



ETH's dataset results have 
less variance than INRIA's

Monocular Stereo



Using stixels provides speed 
without quality loss
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Detecting using stixels 
provides speed

 No geometry: 
 640x480 pixels x 55 scales => 50 Hz on desktop  

 Ground plane:
 640x60 pixels x 55 scales => 100 Hz on desktop

(8x reduction in search space)  

 Stixels:
 640x60 pixels x 10 scales => 135 Hz on desktop

(150 Hz GPU side, 135 Hz CPU side)  
 44x reduction in search space
 We reach 80 Hz on laptop



  



Win-win detector 

 Highest known quality for a single part detector
(over the INRIA dataset, at camera ready time)

 50 Hz in monocular mode,  
135 Hz in stereo mode, 80 Hz on a laptop.

 5x faster and 3x lower missrate
than previous state-of-the-art, fastHOG.



No resizing + stixels
==

faster and better detections



Future work

 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?
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 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?

 There is room for speed and quality 
improvements
 (Original implementation was crude, 

work in progress version reaches ~170 Hz)  



Future work

 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?

 There is room for speed and quality 
improvements
 (Original implementation was crude, 

work in progress version reaches ~170 Hz)  

 Building a part pased model 
on top of our VeryFast detector ?



  

Rodrigo Benenson
http://rodrigob.github.com

Source code release on August 1st   

?

http://rodrigob.github.com/
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t1

CPU

Stereo
rectification

Input
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Result
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GPU

7.4 ms
(1000 frames 

average)

Stixels
computation
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detection

Non-maxima
suppression

Stereo
rectification

Input
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detection

6 cores of 
Intel Core 
i7-2630QM 
@ 2.00GHz 

Nvidia GeForce 
GTX 560M
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