

Pedestrian detection
at 100 frames per second

R. Benenson, M. Mathias, R. Timofte and L. Van Gool

● Detection is one module
amongst many

● Less computational power

● Latency matters

Why 100 fps ?

How can we make
things faster ?

How can we make
things algorithmically faster ?

INRIA dataset

[Dollar et al. 2011]

B
et

te
r

Better

INRIA dataset

VeryFast 50 Hz

B
et

te
r

Better

Monocular
50 Hz

Stereo
135 Hz

INRIA dataset ETH dataset

INRIA dataset

INRIA dataset

[Viola & Jones 2004]

fastHOG
~10 Hz on GPU

[Prisacariu 2009]

Parts Model
[Felzenszwalb 2008]

ChnFtrs/FPDW
~5 Hz on CPU

[Dollar 2009+2010]

+1 -1 +1 -1

score= w1⋅h1+

+1 -1 +1 -1 +1 -1 +1 -1

score= w2⋅h2+w1⋅h1+

+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

score=

⋯

⋯ +wN⋅hNw2⋅h2+w1⋅h1+

(~4 Hz on GPU)[ChnFtrs, Dollar et al. 2009]

What slows down fastHOG ?

[Prisacariu and Reid 2009]

How to make
features computation

faster ?

One template cannot detect at
multiple scales

✔✔ ✘

Traditionally, features are
computed many times

~50 scales

Traditionally, features are
computed many times

~50 scales

Training one model per scale
is too expensive

~50 scales

Can we avoid resizing
the input image many times ?

Features can be
approximated across scales

~5 scales ~50 scales

≈

[Dollar et al. 2010]

We transfer test time
computation to training time

1 model,
5 image scales

5 models,
1 image scale

(3x reduction in features computation)

At runtime, we use as many
models as scales

5 models,
1 image scale

50 models,
1 image scale

≈

Detecting without resizing
provides quality

Detecting without resizing
provides speed

 ~3x less time on features computation

 Avoids alternating between features
and detection scores computation
(relevant in practice)

 We reach 50 Hz on GPU,
640x480 pixels x 55 scales

We want to use scene geometry
to guide the detections

Monocular Stereo

Stixel world

[Badino et al. 2009]

Depth maps are slow to compute

<50 Hz on CPU

Stixel world without depth map

[Benenson et al. 2011]

135 Hz on CPU

Stixel world without depth map

Left Right

Stixel world without depth map

Left Right

v

disparity

1) Ground plane estimation

Stixel world without depth map

Left Right

v

disparity

1) Ground plane estimation

Stixel world without depth map

Left Right

2) Stixel distance estimation

u

disparity

Stixel world without depth map

Left Right

u

disparity

2) Stixel distance estimation

Stixel world without depth map

Left Right

u

disparity

2) Stixel distance estimation @ 135 Hz CPU

ETH's dataset results have
less variance than INRIA's

Monocular Stereo

Using stixels provides speed
without quality loss

B
et

te
r

Detecting using stixels
provides speed

 No geometry:
 640x480 pixels x 55 scales => 50 Hz on desktop

 Ground plane:
 640x60 pixels x 55 scales => 100 Hz on desktop

(8x reduction in search space)

 Stixels:
 640x60 pixels x 10 scales => 135 Hz on desktop

(150 Hz GPU side, 135 Hz CPU side)
 44x reduction in search space
 We reach 80 Hz on laptop

Win-win detector

 Highest known quality for a single part detector
(over the INRIA dataset, at camera ready time)

 50 Hz in monocular mode,
135 Hz in stereo mode, 80 Hz on a laptop.

 5x faster and 3x lower missrate
than previous state-of-the-art, fastHOG.

No resizing + stixels
==

faster and better detections

Future work

 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?

Future work

 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?

 There is room for speed and quality
improvements
 (Original implementation was crude,

work in progress version reaches ~170 Hz)

Future work

 Transforming classifier seems useful:
 Extension for different occlusions (submitted)
 Extension for different point of views ?

 There is room for speed and quality
improvements
 (Original implementation was crude,

work in progress version reaches ~170 Hz)

 Building a part pased model
on top of our VeryFast detector ?

Rodrigo Benenson
http://rodrigob.github.com

Source code release on August 1st

?

http://rodrigob.github.com/

t0

t1

CPU

Stereo
rectification

Input
images

Result
detections

GPU

7.4 ms
(1000 frames

average)

Stixels
computation

Pedestrian
detection

Non-maxima
suppression

Stereo
rectification

Input
images

Stixels
computation

Pedestrian
detection

6 cores of
Intel Core
i7-2630QM
@ 2.00GHz

Nvidia GeForce
GTX 560M

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

