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Abstract

Mobile robots require object detection and classification
for safe and smooth navigation. Stereo vision improves such
detection by doubling the views of the scene and by giving
indirect access to depth information. This depth informa-
tion can also be used to reduce the set of candidate detec-
tion windows. Up to now, most algorithms compute a depth
map to discard unpromising detection windows. We propose
a novel approach where a stixel world model is computed
directly from the stereo images, without computing an in-
termediate depth map. We experimentally demonstrate that
such approach can considerably reduce the set of candidate
detection windows at a fraction of the computation cost of
previous approaches.

1. Introduction
Mobile robotics in urban environments has shown to be

a challenging field of research. Arguably one of the cor-
ner stones for mobile robots is the perception problem. For
navigation purposes the robot is particularly concerned with
where objects may move in the future. The robot will often
observe mobile objects that are not moving, e.g. pedestri-
ans and cars waiting at a red light. These objects can only
be detected by appearance, their proper detection is neces-
sary to ensure the correctness of the world model and thus
safety and proper navigation.

For navigation in dynamic environments, appearance
based object detection and classification is a must.

Faster detection using stereo images The traditional use
of stereo image pairs for object detection is to build a dense
depth map [6, 3, 9]. This depth map is used as an additional
feature for detection (improving quality) or as a method to
reduce the search space (improving speed). The depth infor-
mation allows the robot to rapidly rule out unlikely areas for
the presence of objects, such as ground, sky or areas of the
image where the depth is very irregular (vegetation). By re-
ducing the set of candidate detection windows, the appear-
ance based detection is accelerated. In this paper we achieve

Figure 1: The stixel world is composed of the ground plane
and vertical sticks describing the obstacles.

the same goal without computing the depth map image.

Stixel world Badino et al. introduced the notion of stixel
world [2]. The stixel world is a particular parametrization
of the world model that makes strong simplifying assump-
tions. It assumes that the ground is locally flat and that all
objects can be described as flat “sticks” raising vertically
above the ground (see figure 1). Each of these vertical sticks
corresponds to a segment of a column in the image, called a
stixel.

Obviously, the real world is not a stixel world. The stixel
world may not adequately model all objects of a scene, but
as long as the ground is approximately flat, it will properly
model objects of interest such as pedestrians, cars, and bi-
cycles [17, 18].

Assumptions In this paper we assume that the mobile
platform acquires a stereo video stream with cameras that
are parallel to the horizon, that the ground can be approxi-
mated as locally planar and that the objects of interest have
a height in a known limited range (e.g. 0.5 to 3 m). We also
assume that the stereo system is calibrated and that we have
a rough estimate of its initial position with respect to the
ground.
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1.1. Contribution

To the best of our knowledge, previous works building
stixel world representations are all based on an initial dense
depth map estimation. This depth map contains much more
information than the stixel world representation, but is con-
sequently slower to compute and risks to be a costly detour.

Independent of future hardware improvements, algorith-
mic speed improvements are always welcome because they
leave more computational resources for the higher level
tasks of the robot. There is constant pressure to speed up
the object detection module.

In this paper we show that it is possible to compute a
stixel world estimate directly without computing an inter-
mediary depth map. By skipping this step, we obtain a stixel
world estimate faster. Having a faster stixel world estimate,
in turn, allows us to quickly discard large image portions,
lowering the latency of object detection (see figure 2).

The core idea lies on the realization that stereo matching
is inherently ambiguous. Image areas with low horizontal
gradient will yield ambiguous matches, which translate in
ambiguous depth estimates. All stereo methods providing
a dense depth map will either use smoothing constraints or
prior knowledge. In our case, the stixel world itself defines
the prior knowledge and smoothing constraints. As such, it
should be possible to directly estimate this reduced repre-
sentation, without spending time on a more complex model
based on different constraints and assumptions.

1.2. Related work

While the term “stixel” appeared recently, the idea of
using very simplified world models has been visited many
times. Fifteen years ago, stereo vision was already used to
estimate ground parameters and to detect the presence of
obstacles on the ground [8]. Such systems then evolved to
allow for free space estimation [16] and, ten years ago, to
have rough object detection [7]. These initial approaches
were further improved to handle non-flat ground [14] and
non-frontal objects [15, 11, 19].

More recently, the idea of computing free space using
dynamic programming was introduced [1, 13] and extended
to estimate both the free space and the height of the front-
most obstacles [2].

With the exception of [13], all methods mentioned use
(dense or sparse) depth map computation as an initial step.
In a sense our work can be seen as an extension of [13],
by adding the object height estimation and by removing the
need for strong oriented gradients; or as an optimization
of [2], where we remove the need for a full depth map to
estimate the stixel world.

The general approach of using dynamic programming
over column-wise matching cost also relates to the work of
Cornelis et al. [4], where it was used to estimate the build-
ings of the street, instead of the objects in the street.

2. Stixel estimation
The proposed stixel estimation method has four steps.

From the input rectified stereo images a pixel-wise cost vol-
ume is computed (§2.1). This cost volume is used to esti-
mate the ground plane (§2.2), which in turn is used to esti-
mate the stixel disparities (§2.3). Finally, the stixel disparity
estimates are used to also estimate the stixel heights (§2.4).

For simplicity’s sake, we describe the method using stix-
els of one pixel width. A stixel is estimated for each image
column u. Using broader stixels would reduce the overall
computational cost by averaging columns of data immedi-
ately after the cost volume computation, but will also reduce
the spatial resolution of the stixels. In this paper we do not
explore this quality versus speed trade-off.

2.1. Cost volume computation

Given a pair of rectified stereo images, we compute a
matching cost volume: for every pixel in the left image and
for every disparity value, we compute the cost as the vanilla
sum of absolute differences over the RGB colour channels
(using a window of size 1 pixel). Kubota et al. [13] used ori-
entation based matching to improve robustness, assuming
that the images contain strong directional gradients. This
seems too restrictive as it precludes handling textures with
spots instead of lines (see the ground in figure 5).

The computed values are stored in memory as
cm(u, v, d) (“matching cost”) where u, v, d indicate the hor-
izontal axis, vertical axis and disparity respectively. Since
the operation is done pixel-wise, it is embarrassingly paral-
lel and thus very fast to compute. Most (if not all) stereo
matching methods include an equivalent step with similar
or higher cost, which is usually followed by a smoothing
process (which dominates the computation time) [10].

2.2. Ground plane estimation

The ground plane is estimated using the v-disparity
method [14], but without computing a depth map. We di-
rectly project the cost volume along the horizontal axis (u
axis) to create a “v-disparity” image. Each pixel in this
image contains the summed cost of every pixel along the
v-disparity unidimensional slice. The ground plane param-
eters are then obtained by robustly fitting a line on the v-
disparity image.

For stixel world estimation we only need a bijective re-
lation fground : U × V 7→ D where for any pixel position
(u, v) ∈ U × V we obtain the corresponding ground dis-
parity d ∈ D (and vice versa). Given our assumptions, this
mapping takes the form fground : V 7→ D. More complex
ground models could also be used [12].

2.3. Stixels distance estimation

A projection of the cost volume along the horizontal axis
provided the ground estimate. In this section a projection



(a) Dense set of detection win-
dows

(b) Reduced set of windows using
a ground plane estimate

(c) Ideal stixel estimations (same
color code as figure 5)

(d) Reduced set of candidate win-
dows using stixels

Figure 2: This paper aims at providing a faster use of stereo images to reduce the set of candidate detection windows. The
stixel world representation allows to properly estimate the candidate windows for the frontmost objects, as illustrated here.

Figure 3: Example cs with estimated d∗s(u) in pink.

along the vertical (v axis) will provide an estimate of the
stixels depth. Following the approach of Kubota et al. [13],
the disparity (and thus the depth) of each stixel is estimated
using 2D dynamic programming over a data term cs and a
smoothness term ss, as explained below.

The goal is to find the optimal disparities for the stixels

d∗s(u) = argmin
d(u)

∑
u

cs (u, d(u)) +
∑

ua,ub

ss (d(ua), d(ub))

(1)
where ua, ub are neighbours (|ua − ub| = 1).

2.3.1 Data term

For each u coordinate and possible d disparity value, we
calculate the evidence supporting the presence of a stixel in
the left image by computing the cost cs(u, d) (“stixel cost”).
The lower the cost the more likely that a stixel is present at
position (u, d).

The cost cs is the result of summing two costs: co(u, d)
(“object cost”), the cost of a vertical object being present,
and cg(u, d) (“ground cost”), the cost of a supporting
ground being present (see figure 3).

cs(u, d) = co(u, d) + cg(u, d) (2)

Using v(d) = f−1
ground(d) we can map each (u, d) co-

ordinate to a point (u, v(d)) in the image plane. Using the
camera calibration and the ground estimate we can also es-
timate the vertical position of a point above the ground for
a given height v(h, d). We will use the assumed minimum
height of objects ȟo to search for the depth of the stixels.

We can now define co and cg as

co(u, d) =
v(d)∑

v=v(ȟo,d)

cm(u, v, d) ,

cg(u, d) =
|V |∑

v=v(d)

cm(u, v, fground(v))

(3)

where |V | indicates the number of rows in the image and
the smallest v is at the top of the image.

2.3.2 Smoothness term

Not all the pixels in the right image are visible in the left
image. Some of the objects visible in the right image are oc-
cluded in the left image by nearer objects (and vice versa).
Since the stixels are estimated from stereo data, it is ex-
pected that some of them correspond to occluded areas.

When analysing the left image, this occlusion constraint
invalidates any stixel behind the “one disparity less per pixel
to the left” line [13]. We construct the smoothness term ss

(“stixel smoothness”) accordingly,

ss (da, db) =


∞ if da < db − 1
co (ua, da) if da = db − 1
0 if da > db − 1

(4)

where da = d(ua), db = d(ub), and ua is one pixel to the
left of ub. The case ss = ∞ ensures that no stixel distance
estimate will violate the occlusion constraint.

2.3.3 Dynamic programming

Given the data term cs and the smoothness term ss, the opti-
mal depth for each stixel, d∗s(u) (“stixel disparity”), is com-
puted by solving a standard minimizing 2D dynamic pro-
gram in the u-disparity domain, as in [13].

Using the u-disparity boundary d∗s(u) (see figure 3) and
the ground plane model fground, we can compute the u-
v boundary v∗bottom(u) that represents the bottom of each



stixel, as shown in the figure 5. Stixels with a disparity
moving along the line of ss =∞ are labelled as occluded.

2.4. Stixels height estimation

To estimate the depth of the stixels we used the ob-
ject minimal height ȟo assumption. To estimate the actual
height of each stixel, we will estimate the likelihood that
each pixel above the ground belongs to the estimated stixel
disparity d∗s(u). These estimates are provided by the mem-
bership function m(u, v).

2.4.1 Membership function

Badino et al. [2] use the input depth map to compute a mem-
bership function based on the distance between the pixel-
wise disparities and the stixel disparities. We show here
how to compute a similar membership function, without es-
timating pixel-wise disparities.

If a pixel (u, v) in the image belongs to a given dispar-
ity da we expect the cost function around cm(u, v, da) to
be a local minima in the disparity dimension. If the true
disparity at (u, v) is far from da, then the surroundings of
cm(u, v, da) will not resemble a local minima. Our mem-
bership function m(u, v) is a local measure of how much
cm(u, v, d∗s(u)) resembles a local minima or not.

This value is fast to compute since we need to visit only
a small fraction of the cost volume cm. All pixels below the
estimated u-v boundary v∗bottom(u) can be skipped. All pix-
els above the maximum expected height of the objects can
be skipped as well. All columns corresponding to occluded
stixels can be skipped. For the pixels that we do visit, only
a few values around cm(u, v, d∗s(u)) need to be visited.

Our membership function m(u, v) is defined as

m(u, v) = 2 · (max (0, m1(u, v))− 0.5) (5)

m1(u, v) =
∑

d∈N(d∗s(u))

m2 (c̃m(u, v, d), c̃m(u, v, d∗s(u)))
|N (d∗s(u))|

(6)

m2(c, c∗) =

{
+ max(|c−c∗|,∆max)/∆max if c > c∗

−max(|c−c∗|,∆max)/∆max otherwise
(7)

where N (da) indicates a small neighbourhood around da

(e.g. ±10 pixels), |N (da)| indicates the number of ele-
ments in N (da), ∆max is a small constant (∆max = 10
in our implementation) and c̃m is the cost value after apply-
ing a 5× 5 mean filter.

As defined in equation 5, m(u, v) = 1 means full mem-
bership,−1 means no membership, 0 indicates no contribu-
tion.

(a) Example of m(u, v) (b) Corresponding ch

Figure 4: Examples of the cost matrices used to estimate the
stixels height (frame 7).

The traditional approach for height estimation would re-
quire visiting the complete cost volume cm(u, v, d) in order
to compute a full depth map. On the other hand, our ap-
proach requires to visit less than 15% of the cost volume,
with a corresponding reduction in the computation cost.

2.4.2 Data term

The membership function m(u, v) is then converted into a
height cost ch(u, v) (see figure 4):

ch(u, v) =
v∑

w=v∗bottom(u)

|m(u, w)− 1|

+
v(ĥo,d∗s(u))∑

w=v

|m(u, w) + 1|

(8)

where v(ĥo, d
∗
s(u)) indicates the row of the maximum

height considered for an object.

2.4.3 Smoothness term

The height cost ch(u, v) is the data term for a 2D dynamic
programming formulation similar to §2.3.3, but with differ-
ent data and smoothness terms. The smoothness term is:

sh(ua, va, ub, vb) = k1 · |va − vb| ·
max

(
0, 1− z(d∗s(ua))−z(d∗s(ub))

∆z2

)
(9)

where |ua − ub| = 1, k1 is a scaling factor that penalizes
top shapes that are non horizontals (set to 1 in our exper-
iments), and ∆z2 indicates how much near stixels should
influence each other given their depth (set to 3 m in our ex-
periments).

As a post-processing step, if the estimated stixel height is
too far from the expected one we consider it erroneous and
reset it to the expected height. In our experiments we used
an expected object height of 1.8 m and a 20 pixels margin.



3. Results
3.1. Evaluation dataset

It has already been shown that, when using an inter-
mediate dense depth map, the stixel world representation
can accurately represent the obstacles present in the scene
[18]. Our aim is slightly different. Since we focus on ob-
ject detection, we evaluate our algorithm not based on met-
ric ground truth but rather on manually annotated bounding
boxes around pedestrians. We expect the calculated stixels
to be tightly bounded by such boxes. To our knowledge this
is the first time that stixel world estimations are evaluated
in the context of object detection.

We use the publicly available dataset from Ess et al. [6]
to evaluate our method. The “Bahnhof” sequence contains
∼ 1000 stereo frames of crowded sidewalks in Zürich. The
dataset provides ∼ 7400 bounding boxes for all pedestri-
ans of at least 40 pixels in height (up to∼ 25 meters away)
appearing in each left frame of the sequence . The dataset
also provides the internal camera calibration, the stereo rig
calibration and a rough estimate of its position with respect
to the ground. Each frame contains 640× 480 pixels.

In figure 5, we present some qualitative results of success
and failure cases.

3.2. Stixels estimation error

For a quantitative evaluation of the stixel estimates we
measure the error between the bottom and top of the stixel
at the centre of each annotated bounding box. Stixels esti-
mated as occluded are also considered in the evaluation.

With this evaluation we are interested in answering two
questions: It is better to estimate the height of the pedes-
trians than assuming a fixed height? How does our height
estimation method compare to using a full depth map?

To answer these questions we estimate the stixels based
on three methods: ours, simple sad and csbp.

ours: stixels estimation without depth map, as de-
scribed in section 2.
simple sad: a depth map is estimated using winner-

take-all, sum of absolute differences over 9× 9 pixels. The
u-disparity, and v-disparity images are computed using the
depth map, and the stixels height is estimated using the ap-
proach of Badino et al. [2]. This method serves as a base-
line since it resembles the internals of our algorithm, and it
is among the simplest (and fastest) stereo algorithms.

csbp: a depth map is estimated using fast variant of the
hierarchical belief propagation approach [20]. This method
is expected to provide better depth maps at an increased
computational cost (see figure 6). We use the original im-
plementation provided by the authors.

All parameters are kept fix between the three methods
(we experimented adjusting the parameters for the depth
maps cases, but results where slightly worse). For each

Figure 7: Count of bounding boxes with bottom or top
stixel absolute error lower than a given value. Evaluation
over 999 frames of the Bahnhof sequence. Stixels are es-
timated using the proposed method (ours), and two full
depth map estimation methods (csbp and simple sad).
Plot is limited to the range (0, 50) pixels.

method we also compare estimating the height from the data
(estimated case), or simply using a fixed stixel height of
1.8 m, based on the expected object height (fixed case).
The results are presented in figure 7.

For both bottom and top errors, irrespective of the
method, the fraction of covered bounding boxes reaches
∼ 90% at around 30 pixels of absolute error. The remain-
ing 10% correspond to cases with high error. These include
pedestrians that are highly occluded, or who cannot be prop-
erly represented by the stixel world model, such as the one
appearing “below the arm” of someone else (violating the
non-transparency assumption of the stixels), see figure 5.

Overall the results of figure 7 show that having a better
depth estimate improves the stixel estimation, that estimat-
ing the height is better than using a fixed value, and that
our proposed stixel estimation without depth map provides



(a) Frame 7 (b) (c)

(d) Wrong depth, due to wrong ground plane (e) Wrong height due to ambiguous disparities (f) Wrong height due to reflections

Figure 5: Examples of good results (a,b,c) and failure cases (d,e,f). Red boxes indicate ground truth, the grey boxes the raw
results from the detector, and the white boxes the detections validated by the stixels estimate. The lower yellow line and the
upper orange line indicate the stixels bottom and top respectively. Dark blue pixels indicate occluded stixels.

(a) Full depth map estimated using
simple sad (see §3.2)

(b) Full depth map estimated using csbp
(see §3.2)

(c) Cost matrix m(u, v) built from the
stereo image (see §2.4)

Figure 6: The stixels height can be estimated using a full depth map or directly estimating the cost matrix (i.e. without any
depth map computation). All images computed over frame 7.

comparable results to having a good depth map estimate.
For the bottom error csbp is better than ours, but the

difference fades out as the absolute error margin reaches
30 pixels. This is the margin we use for objects detection
(see figure 8). For the top error ours provides comparable
results.

3.3. Pedestrian detection rates

The aim of this paper is to show that stereo information
can be used to accelerate object detection, without needing

to compute a depth map first.

In figure 8, we present the detection rates obtained by
a standard HOG + linear SVM pedestrian detector [5], its
raw results, the results filtered using the ground plane esti-
mate, and the results filtered using the estimated stixels. For
each detection we take the middle stixel and check the top
and bottom margin. We additionally re-weight the detec-
tions score based on the distance to the ground plane/stixel
estimates.

It can be seen in figure 8 that, in the low false positives



per image area, using detections based on the stixel esti-
mates provides better results than the raw detector, despite
using a search space orders of magnitude smaller. The stixel
results also compare favourably to using the ground plane
constraint only.

Figure 8: Detection rates obtained from a HOG detector,
filtered using stixels (estimated case), the ground plane
constraints only (ground corridor), and the raw de-
tector only.

3.4. Failure cases

In figure 5 we present some representative failure cases.
These are rare events, that show the limitations of the ap-
proach. Most observed failures fall into two categories:

1) Ground plane estimation failures. Any error in the
ground plane estimation will have a direct impact on the
quality of the stixel estimates (see figure 5d). In this paper
we use a simplistic ground estimation, its robustness can
certainly be improved.

2) The pixel matching is uninformative. The proposed
method is based on matching costs. When these are am-
biguous (black area in figure 5e) or inaccurate (reflections
in figure 5f) the height estimation will be inaccurate. We
have noticed that the disparity estimation is less sensitive to
this effect (which is more critical for the robot navigation
than the height). These disturbances could be mitigated by
improving the matching cost, and by better exploiting the
information available in the image.

3.5. Computational cost

3.5.1 Stixel estimation versus full depth map

From a computational perspective the algorithm described
in section 2 requires:

1) Computing the pixel-wise cost volume cm.
2) Generating the v-disparity image and detecting the

ground plane on it.

3) Generating the cost matrices co and cg .
4) Generating the height cost matrix ch.
5) Solving two 2D dynamic programming problems, one

in the U × D domain and a second one in a subset of the
U × V (image) domain.

Most stereo algorithms that provide “good enough” re-
sults are based on some variant of belief propagation. The
simplest of them will compute cm and run multiple 2D dy-
namic programs over different image slices, a number com-
parable to the rows in the image [10]. In that perspective,
steps 1 and 5 account for only a very small fraction (less
than 10%) of such stereo algorithms. On the other hand,
step 4 corresponds to less than 15% of a simple winner-
take-all sum of absolute differences stereo algorithm, pos-
sibly the fastest stereo algorithm available.

Since previous stixel world estimation methods are based
on depth map estimation and our approach cuts the cost
of this step without increasing posterior computations, for
equivalently efficient implementations, our algorithm is
guaranteed to be significantly faster.

Our initial, fully multi-threaded, naive implementation
runs at about ∼ 2 Hz. By making a better use of the CPU
capabilities, we achieve a significant speed improvement.
There are three main differences between our optimized and
naive version.

1) The memory access patterns are optimized (transpos-
ing the images when necessary), and the allocated memory
is reduced to minimal bits representations (e.g. int16 versus
float32).

2) SIMD instructions are used explicitly for the sum of
absolute differences operations.

3) The summed costs are computed directly. This is the
key difference that, combined with the above points, gives
the main speed-up.
Instead of computing (and storing) the cost volume cm, and
then computing the u axis sum (ground estimate), the v axis
sum (distance estimate) or the small windows sums (height
estimate); the sums are computed directly by iterating over
the images. In theory, this means recomputing three times
the cost volume, but in practice, given the architecture of
modern CPUs, this is significantly faster.

When running on a 2009 desktop machine (Intel Core
i7 860@2.80GHz, 4 cores with hyper-threading), averaged
over the Bahnhof sequence, we obtain the following speed
results:
∼ 300 Hz for ground plane estimation (see §2.2).
∼ 95 Hz for ground plane + stixels distance estimation

(fixed case) (see §2.3).
∼ 25 Hz for ground plane + stixels distance + stixels

height estimation (estimated case) (see §2.4).
When properly optimized, the proposed approach is ca-

pable of reaching real-time speed processing on CPU only.
We leave the GPU fully available for the appearance based



object detection (or any other desired processing).
For comparison, the original stixel world paper [2] uses

a FPGA+CPU combo that runs at ∼ 15 Hz (40 + 30 ms,
from images input to stixels estimate). Also, the SIMD
optimized, multi-threaded CPU implementation of stereo
block matching in OpenCv 2.2 (default parameters) runs at
∼ 20 Hz on our evaluation machine.

3.5.2 Detection search space reduction

Assuming an image of 640 × 480 pixels, that the detec-
tion windows are positioned in steps of 8 pixels (vertically
and horizontally), and that 16 different scales are used; a
full search would require considering 75000 detection win-
dows.

Using the ground plane information allows one to fix the
scale (assuming constant ratio) and the search area (assum-
ing an horizon at the middle of the image), leading to a
reduction of the number of detection windows to ∼ 2500
windows. Using the stixel estimates with a margin of
±30 pixels this number is further reduced to ∼ 650 win-
dows (see figure 2), about one fourth of when using the
ground estimate only.

4. Conclusion and future work

Robot navigation requires object detection. We have
shown that the stixel world can be used to reduce the set
of candidate detection windows.

We have proposed a new algorithm to estimate the stixel
world without having to compute a depth map at all. This
new method provides an algorithmic speed improvement
over state of the art, enabling real time performance on stan-
dard computers (∼ 25 Hz in our CPU implementation). A
quantitative evaluation has shown that the number of can-
didate detection windows is reduced to a fourth of what
would be needed when using ground estimation only, while
slightly improving the precision-recall curve.

We are currently developing an appearance based objects
detector specifically designed to be coupled with the stixel
world estimate. We hope to be able to exploit the height
estimation or the membership function m(u, v) to further
improve detection rates.

The proposed algorithm can also be used in robots with
stereo cameras and horizontal laser scanners. In this setup,
the laser would provide the stixel depth, and our algorithm
would provide the height estimation. We are interested in
exploring this configuration for robotic applications.
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